[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A235473
Primes whose base-3 representation is also the base-4 representation of a prime.
7
2, 43, 61, 67, 97, 103, 127, 139, 151, 157, 199, 211, 229, 277, 283, 331, 337, 349, 373, 379, 433, 439, 463, 499, 523, 571, 601, 607, 727, 751, 787, 823, 853, 883, 919, 991, 1063, 1087, 1117, 1213, 1249, 1327, 1381, 1429, 1483, 1531, 1567, 1597, 1627, 1759, 1783, 1867, 1999
OFFSET
1,1
COMMENTS
This sequence is part of a two-dimensional array of sequences, given in the LINK, based on this same idea for any two different bases b, c > 1. Sequence A235265 and A235266 are the most elementary ones in this list. Sequences A089971, A089981 and A090707 through A090721, and sequences A065720 - A065727, follow the same idea with one base equal to 10.
This is a subsequence of A045331 and A045375.
EXAMPLE
43 = 1121_3 and 1121_4 = 89 are both prime, so 43 is a term.
MATHEMATICA
Select[Prime[Range[400]], PrimeQ[FromDigits[IntegerDigits[#, 3], 4]]&] (* Harvey P. Dale, Oct 16 2015 *)
PROG
(PARI) is(p, b=4, c=3)=isprime(vector(#d=digits(p, c), i, b^(#d-i))*d~)&&isprime(p) \\ Note: This code is only valid for b > c.
CROSSREFS
Cf. A235266, A235474, A152079, A235475 - A235479, A065720A036952, A065721 - A065727, A235394, A235395, A089971A020449, A089981, A090707 - A091924, A235461 - A235482. See the LINK for further cross-references.
Sequence in context: A085460 A139835 A354726 * A137415 A090194 A107200
KEYWORD
nonn,base
AUTHOR
M. F. Hasler, Jan 12 2014
STATUS
approved