[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A235266
Primes whose base-2 representation is also the base-3 representation of a prime.
72
2, 7, 11, 13, 41, 47, 67, 73, 79, 109, 127, 151, 173, 181, 191, 193, 211, 223, 227, 229, 233, 251, 283, 331, 367, 421, 443, 487, 541, 557, 563, 587, 601, 607, 631, 641, 661, 677, 719, 733, 877, 941, 947, 967, 971, 1033, 1187, 1193, 1201, 1301, 1321, 1373, 1447, 1451, 1471, 1531, 1567, 1571, 1657, 1667, 1669, 1697, 1709, 1759
OFFSET
1,1
FORMULA
a(n) is the number whose base-3 representation is the base-2 representation of A235265(n).
MAPLE
f:= proc(n) local L, i;
L:= convert(n, base, 2);
isprime(add(L[i]*3^(i-1), i=1..nops(L)))
end proc:
select(f, [seq(ithprime(i), i=1..1000)]); # Robert Israel, Jun 03 2019
MATHEMATICA
Select[Prime@ Range@ 250, PrimeQ@ FromDigits[IntegerDigits[#, 2], 3] &] (* Michael De Vlieger, Jun 03 2019 *)
PROG
(PARI) is(p, b=3, c=2)=isprime(vector(#d=digits(p, c), i, b^(#d-i))*d~)&&isprime(p) \\ This code can be used for other bases b, c when b>c. See A235265 for code valid for b<c.
(PARI) forprime(p=2, 1e3, if(isprime(fromdigits(binary(p), 3)), print1(p", "))) \\ Charles R Greathouse IV, Mar 28 2022
(Python)
from sympy import isprime, nextprime
def agen(): # generator of terms
p = 2
while True:
p3 = sum(3**i for i, bi in enumerate(bin(p)[2:][::-1]) if bi=='1')
if isprime(p3):
yield p
p = nextprime(p)
g = agen()
print([next(g) for n in range(1, 65)]) # Michael S. Branicky, Jan 16 2022
CROSSREFS
Cf. A090707 - A091924, A235461 - A235482. See the LINK for further cross-references.
Sequence in context: A117048 A040128 A209630 * A140548 A243630 A341076
KEYWORD
nonn,base
AUTHOR
M. F. Hasler, Jan 05 2014
STATUS
approved