[go: up one dir, main page]

login
A223602
Petersen graph (8,2) coloring a rectangular array: number of 4Xn 0..15 arrays where 0..15 label nodes of a graph with edges 0,1 0,8 8,14 8,10 1,2 1,9 9,15 9,11 2,3 2,10 10,12 3,4 3,11 11,13 4,5 4,12 12,14 5,6 5,13 13,15 6,7 6,14 7,0 7,15 and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an edge of this graph
1
65536, 7424, 176224, 2372080, 43725920, 755683024, 13959069888, 258174966416, 4850832343904, 91505981537072, 1733729781877920, 32909491571349680, 625534833011886880, 11898376530083012208, 226422016143905134464
OFFSET
1,1
COMMENTS
Row 4 of A223599
LINKS
FORMULA
Empirical: a(n) = 22*a(n-1) +146*a(n-2) -4241*a(n-3) -7021*a(n-4) +296069*a(n-5) +84524*a(n-6) -10098300*a(n-7) +2841988*a(n-8) +193753372*a(n-9) -109915280*a(n-10) -2243896688*a(n-11) +1623516032*a(n-12) +16219469440*a(n-13) -13091056384*a(n-14) -74162963712*a(n-15) +62602426368*a(n-16) +215343361024*a(n-17) -182965936128*a(n-18) -395412119552*a(n-19) +329698951168*a(n-20) +450438201344*a(n-21) -361766191104*a(n-22) -303199682560*a(n-23) +230835617792*a(n-24) +107843944448*a(n-25) -76487327744*a(n-26) -15032385536*a(n-27) +9663676416*a(n-28) for n>29
EXAMPLE
Some solutions for n=3
..0..8..0....1..2.10....8.14..8....8.14..8....8.10..8....8..0..1....5..4..3
..0..1..0....1..2..3....8..0..8....8.10..8...12.14..8....7..0..8....3..4..3
..0..1..0...10..2..3....7..0..7....8..0..8....6.14..6....7..0..8....5..4..5
..9..1..2....1..2..1....7..0..8....8..0..8...12.14.12....1..0..7....5.13..5
CROSSREFS
Sequence in context: A188096 A188105 A188097 * A223695 A202939 A069277
KEYWORD
nonn
AUTHOR
R. H. Hardin Mar 23 2013
STATUS
approved