OFFSET
1,3
COMMENTS
See A056004 for an alternate version.
REFERENCES
Helmut Schwichtenberg and Stanley S. Wainer, Proofs and Computations, Cambridge University Press, 2012; 4.4.1, page 148ff.
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
R. L. Goodstein, On the Restricted Ordinal Theorem, The Journal of Symbolic Logic, Vol. 9, No. 2, Jun., 1944.
Wikipedia, Goodstein's Theorem
Reinhard Zumkeller, Haskell programs for Goodstein sequences
EXAMPLE
n = 19: 19 - 1 = 18 = 2^4 + 2^1 = 2^2^2 + 2^1
-> a(19) = 3^3^3 + 3^1 = 7625597484990;
n = 20: 20 - 1 = 19 = 2^4 + 2^1 + 2^0 = 2^2^2 + 2^1 + 2^0
-> a(20) = 3^3^3 + 3^1 + 3^0 = 7625597484991;
n = 21: 21 - 1 = 20 = 2^4 + 2^2 = 2^2^2 + 2^2
-> a(21) = 3^3^3 + 3^3 = 7625597485014.
PROG
(Haskell) -- See Link
(PARI) A222112(n)=sum(i=1, #n=binary(n-1), if(n[i], 3^if(#n-i<2, #n-i, A222112(#n-i+1)))) \\ See A266201 for more general code. - M. F. Hasler, Feb 13 2017, edited Feb 19 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Feb 13 2013
STATUS
approved