OFFSET
0,2
COMMENTS
Set q=20 and f(m)=q^(m-1)*(q-1), then a(n) is the sum over all partitions P of n over all products Product_{k=1..L} f(m_k) where L is the number of different parts in the partition P=[p_1^m_1, p_2^m_2, ..., p_L^m_L].
Setting q to a prime power gives the sequence "Number of conjugacy classes in GL(n,q)":
Sequences where q is not a prime power:
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..100
PROG
(PARI)
N=66; x='x+O('x^N);
gf=prod(n=1, N, (1-x^n)/(1-20*x^n) );
v=Vec(gf)
CROSSREFS
KEYWORD
nonn
AUTHOR
Joerg Arndt, Jan 20 2013
STATUS
approved