[go: up one dir, main page]

login
A221159
a(n) = Sum_{i=0..n} Stirling2(n,i)*2^(3i).
12
1, 8, 72, 712, 7624, 87496, 1067976, 13781448, 187104200, 2661876168, 39549629384, 611918940616, 9834596715464, 163824830616008, 2823080829871048, 50238768569014728, 921839901090823112, 17416746966515278280, 338394913332895863752, 6753431112631087835592, 138296031340416209103816
OFFSET
0,2
COMMENTS
The number of ways of putting n labeled balls into a set of bags and then putting the bags into 8 labeled boxes. - Peter Bala, Mar 23 2013
LINKS
Frank Simon, Algebraic Methods for Computing the Reliability of Networks, Dissertation, Doctor Rerum Naturalium (Dr. rer. nat.), Fakultät Mathematik und Naturwissenschaften der Technischen Universität Dresden, 2012. See Table 5.1.
FORMULA
E.g.f.: exp(8*(exp(x) - 1)). - Peter Bala, Mar 23 2013
a(n) ~ n^n * exp(n/LambertW(n/8)-8-n) / (sqrt(1+LambertW(n/8)) * LambertW(n/8)^n). - Vaclav Kotesovec, Mar 12 2014
G.f.: Sum_{j>=0} 8^j*x^j / Product_{k=1..j} (1 - k*x). - Ilya Gutkovskiy, Apr 11 2019
MATHEMATICA
Table[BellB[n, 8], {n, 0, 20}] (* Vaclav Kotesovec, Mar 12 2014 *)
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 04 2013
STATUS
approved