[go: up one dir, main page]

login
A229557
Array read by antidiagonals. Rows are the denominators of consecutive harmonic transforms starting with a first row 1, 1, 1,....
2
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 3, 1, 1, 1, 12, 33, 5, 1, 1, 1, 60, 825, 365, 8, 1, 1, 1, 20, 113025, 810665, 5992, 13, 1, 1, 1, 140, 5538225, 286794631705, 5886103384, 164541, 21, 1, 1, 1, 280, 60920475, 5619905141583441965, 4630449259971272605672, 14469935305431, 1031079, 34, 1, 1, 1
OFFSET
1,9
COMMENTS
The "harmonic transform" of a sequence of positive numbers a(i) is the sequence h(n) of the partial sums of their reciprocals: h(n)=sum_{i=1..n} 1/a(i).
EXAMPLE
Table begins
1, 1, 1, 1,...
1, 1, 1, 1,...
1, 2, 6, 12,...
1, 3, 33, 825,...
1, 5, 365, 810665,...
MAPLE
A229556A := proc(n, k)
option remember;
if n = 1 then
1;
else
add( 1/procname(n-1, c), c=1..k) ;
end if;
end proc:
A229557 := proc(n, k)
denom(A229556A(n, k)) ;
end proc:
for d from 2 to 12 do
for k from d-1 to 1 by -1 do
printf("%d, ", A229557(d-k, k)) ;
end do:
end do:
CROSSREFS
Cf. A229556 (numerators).
Rows 1-4 are A000012(n), A000012(n), A002805(n), A124432(n+1).
Columns 1-2 are A000012(n), A000045(n+1).
Sequence in context: A300830 A139329 A335432 * A332700 A256268 A213275
KEYWORD
nonn,tabl,frac
AUTHOR
Franz Vrabec, Sep 26 2013
STATUS
approved