[go: up one dir, main page]

login
A228525
Triangle read by rows in which row n lists the compositions (ordered partitions) of n in colexicographic order.
32
1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 2, 2, 2, 1, 3, 4, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 3, 1, 4, 1, 1, 1, 1, 2, 2, 1, 2, 1, 2, 2, 3, 2, 1, 1, 3, 2, 3, 1, 4, 5, 1, 1, 1, 1, 1, 1
OFFSET
1,4
COMMENTS
The representation of the compositions (for fixed n) is as lists of parts, the order between individual compositions (for the same n) is co-lexicographic. [Joerg Arndt, Sep 02 2013]
The equivalent sequence for partitions is A211992.
Row n has length A001792(n-1).
Row sums give A001787, n >= 1.
EXAMPLE
Illustration of initial terms:
---------------------------------
n j Diagram Composition
---------------------------------
. _
1 1 |_| 1;
. _ _
2 1 |_| | 1, 1,
2 2 |_ _| 2;
. _ _ _
3 1 |_| | | 1, 1, 1,
3 2 |_ _| | 2, 1,
3 3 |_| | 1, 2,
3 4 |_ _ _| 3;
. _ _ _ _
4 1 |_| | | | 1, 1, 1, 1,
4 2 |_ _| | | 2, 1, 1,
4 3 |_| | | 1, 2, 1,
4 4 |_ _ _| | 3, 1,
4 5 |_| | | 1, 1, 2,
4 6 |_ _| | 2, 2,
4 7 |_| | 1, 3,
4 8 |_ _ _ _| 4;
.
Triangle begins:
[1];
[1,1],[2];
[1,1,1],[2,1],[1,2],[3];
[1,1,1,1],[2,1,1],[1,2,1],[3,1],[1,1,2],[2,2],[1,3],[4];
[1,1,1,1,1],[2,1,1,1],[1,2,1,1],[3,1,1],[1,1,2,1],[2,2,1],[1,3,1],[4,1],[1,1,1,2],[2,1,2],[1,2,2],[3,2],[1,1,3],[2,3],[1,4],[5];
PROG
(PARI)
gen_comp(n)=
{ /* Generate compositions of n as lists of parts (order is lex): */
my(ct = 0);
my(m, z, pt);
\\ init:
my( a = vector(n, j, 1) );
m = n;
while ( 1,
ct += 1;
pt = vector(m, j, a[j]);
\\ /* for A228369 print composition: */
\\ for (j=1, m, print1(pt[j], ", ") );
/* for A228525 print reversed (order is colex): */
forstep (j=m, 1, -1, print1(pt[j], ", ") );
if ( m<=1, return(ct) ); \\ current is last
a[m-1] += 1;
z = a[m] - 2;
a[m] = 1;
m += z;
);
return(ct);
}
for(n=1, 12, gen_comp(n) );
\\ Joerg Arndt, Sep 02 2013
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Omar E. Pol, Aug 24 2013
STATUS
approved