[go: up one dir, main page]

login
A224473
(2*5^(2^n) - 1) mod 10^n: a sequence of trimorphic numbers ending in 9.
10
9, 49, 249, 1249, 81249, 781249, 5781249, 25781249, 425781249, 6425781249, 36425781249, 836425781249, 9836425781249, 19836425781249, 519836425781249, 2519836425781249, 12519836425781249, 512519836425781249, 4512519836425781249, 84512519836425781249
OFFSET
1,1
COMMENTS
a(n) is the unique positive integer less than 10^n such that a(n) - 1 is divisible by 2^n and a(n) + 1 is divisible by 5^n.
FORMULA
a(n) = (2 * A007185(n) - 1) mod 10^n.
PROG
(Sage) def A224473(n) : return crt(1, -1, 2^n, 5^n);
CROSSREFS
Cf. A033819. Corresponding 10-adic number is A091661. The other trimorphic numbers ending in 9 are included in A002283, A198971 and A224475.
Sequence in context: A228018 A081655 A181539 * A146798 A055428 A359186
KEYWORD
nonn,base
AUTHOR
Eric M. Schmidt, Apr 07 2013
STATUS
approved