OFFSET
0,3
COMMENTS
For a guide to related sequences, see A211422.
Also, a(n) is the number of ordered pairs (w,x) with both terms in {-n,...,0,...,n} and w+2x divisible by 5. If (w,x) is such a pair it is easy to see that (-x,w), (-w,-x), and (x,-w) also are such pairs. If both w and x are nonzero these four pairs lie one in each quadrant. If one of w or x is zero, the other must be a multiple of 5. This means that a(n) equals 4*A211523(n) (the nonzero pairs) plus 4*floor(n/5) + 1 (pairs with w or x equal to zero). Since the sequences A211523(n), floor(n/5), and the constant sequence all satisfy the recurrence conjectured in the formula section, a(n) must also satisfy the recurrence, so this proves the conjecture. - Pontus von Brömssen, Jan 17 2020
LINKS
Pontus von Brömssen, Table of n, a(n) for n = 0..1024
FORMULA
Conjectures from Colin Barker, May 15 2017: (Start)
G.f.: (1 - x + 4*x^2 + 4*x^4 - x^5 + x^6) / ((1 - x)^3*(1 + x + x^2 + x^3 + x^4)).
a(n) = 2*a(n-1) - a(n-2) + a(n-5) - 2*a(n-6) + a(n-7) for n>6.
(End)
a(n) = (4*n*(n+1) + c(n))/5, where c(n) is 5 if n is 0 or 4 (mod 5), -3 if n is 1 or 3 (mod 5), and 1 if n is 2 (mod 5). - Pontus von Brömssen, Jan 17 2020
MATHEMATICA
PROG
(Magma) a:=[]; for n in [0..50] do m:=0; for i, j in [-n..n] do if (i+2*j) mod 5 eq 0 then m:=m+1; end if; end for; Append(~a, m); end for; a; // Marius A. Burtea, Jan 19 2020
(Magma) R<x>:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1 - x + 4*x^2 + 4*x^4 - x^5 + x^6) / ((1 - x)^3*(1 + x + x^2 + x^3 + x^4)))); // Marius A. Burtea, Jan 19 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Apr 11 2012
STATUS
approved