[go: up one dir, main page]

login
A210802
Triangle of coefficients of polynomials v(n,x) jointly generated with A210801; see the Formula section.
3
1, 2, 2, 5, 5, 3, 8, 16, 11, 5, 17, 34, 40, 22, 8, 26, 82, 107, 93, 43, 13, 53, 163, 287, 287, 201, 81, 21, 80, 352, 674, 862, 709, 419, 150, 34, 161, 676, 1592, 2272, 2326, 1641, 845, 273, 55, 242, 1378, 3482, 5878, 6797, 5863, 3638, 1666, 491, 89, 485
OFFSET
1,2
COMMENTS
Row n ends with F(n+1), where F=A000045 (Fibonacci numbers).
Row sums: A003462
Alternating row sums: A077898
For a discussion and guide to related arrays, see A208510.
FORMULA
u(n,x)=u(n-1,x)+(x+1)*v(n-1,x)+1,
v(n,x)=(x+2)*u(n-1,x)+(x-1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
EXAMPLE
First five rows:
1
2....2
5....5....3
8....16...11...5
17...34...40...22...8
First three polynomials v(n,x): 1, 2 + 2x, 5 + 5x + 3x^2
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + (x + j)*v[n - 1, x] + c;
d[x_] := h + x; e[x_] := p + x;
v[n_, x_] := d[x]*u[n - 1, x] + e[x]*v[n - 1, x] + f;
j = 1; c = 1; h = 2; p = -1; f = 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210801 *)
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210802 *)
Table[u[n, x] /. x -> 1, {n, 1, z}] (* A003462 *)
Table[v[n, x] /. x -> 1, {n, 1, z}] (* A003462 *)
Table[u[n, x] /. x -> -1, {n, 1, z}] (* A000027 *)
Table[v[n, x] /. x -> -1, {n, 1, z}] (* A077898 *)
CROSSREFS
Sequence in context: A243941 A161622 A116559 * A257943 A008280 A239005
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 27 2012
STATUS
approved