OFFSET
0,7
COMMENTS
Also the expansion of 1+q^2*H(q^11)*G(q); that is, H(q)*G(q^11) - q^2*G(q)*H(q^11) = 1, we also have H(q)*G(q)^11 - q^2*G(q)*H(q)^11 = 1 + 11*q*(G(q)*H(q))^6, see the Ramanujan reference.
Number of partitions of n into parts t such that t mod 55 is in {2, 3, 7, 8, 11, 12, 13, 17, 18, 22, 23, 27, 28, 32, 33, 37, 38, 42, 43, 44, 47, 48, 52, 53}.
With E(q) = Product_{n>=1} (1-q^n) we have G(q)*H(q) - E(q^5)/E(q), G(q) = ( E(q^8)/E(q^2) * (G(q^16) + q*H(-q^4)) ), and H(q) = ( E(q^8)/E(q^2) * (q^3*H(q^16) + G(-q^4)) ), see the Berkovich/Yesilyurt reference.
LINKS
Alexander Berkovich, Hamza Yesilyurt, On Rogers-Ramanujan functions, binary quadratic forms and eta-quotients, arXiv:1204.1092v2 [math.NT], 2012.
Srinivasa Ramanujan, Algebraic relations between certain infinite products, Proceedings of the London Mathematical Society, vol.2, no.18, 1920.
FORMULA
G.f.: H(q)*G(q^11) where G(q) = Sum_{n>=0} q^(n^2)/Product_{k=1..n} (1-q^k) and H(q) = Sum_{n>=0} q^(n^2+n)/Product_{k=1..n} (1-q^k).
G.f.: 1 / Product_{k>=0} (1 - q^k) where k (mod 55) is restricted to the set {2, 3, 7, 8, 11, 12, 13, 17, 18, 22, 23, 27, 28, 32, 33, 37, 38, 42, 43, 44, 47, 48, 52, 53} (the set has 24 elements).
PROG
(PARI)
N=66; q='q+O('q^N );
S=2+2*ceil(sqrt(N));
G(q)=sum(n=0, S, q^(n^2)/prod(k=1, n, 1-q^k)); /* g.f. of A003114 */
H(q)=sum(n=0, S, q^(n^2+n)/prod(k=1, n, 1-q^k)); /* g.f. of A003106 */
Vec(H(q)*G(q^11)) /* show terms */
/* checking the modular equations, all expressions are zero:
( H(q)*G(q)^11 - q^2*G(q)*H(q)^11 ) - ( 1 + 11*q*(G(q)*H(q))^6 )
( H(q)*G(q^11) - q^2*G(q)*H(q^11) ) - ( 1 )
E(q)=prod(n=1, N, 1-q^n);
G(q)*H(q) - E(q^5)/E(q)
G(q) - ( E(q^8)/E(q^2) * (G(q^16) + q*H(-q^4)) )
H(q) - ( E(q^8)/E(q^2) * (q^3*H(q^16) + G(-q^4)) )
*/
(PARI)
N=66; q='q+O('q^N );
E=[2, 3, 7, 8, 11, 12, 13, 17, 18, 22, 23, 27, 28, 32, 33, 37, 38, 42, 43, 44, 47, 48, 52, 53];
Vec( 1 / prod(K=0, N\55+1, prod(k=1, 24, 1 - q^(K*55+E[k]) ) ) )
CROSSREFS
KEYWORD
nonn
AUTHOR
Joerg Arndt, Oct 07 2012
STATUS
approved