[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215877
a(n) = (A(n) - A215817(n))/sqrt(7), where A(n) = (6-sqrt(7))A(n-1) - (12-4*sqrt(7))A(n-2) + (8-3*sqrt(7))A(n-3), with A(0)=3, A(1)=6-sqrt(7), and A(2)=19-4*sqrt(7).
7
0, -1, -4, -16, -64, -254, -1000, -3913, -15248, -59263, -229996, -892033, -3459544, -13421784, -52104416, -202436819, -787231328, -3064347392, -11940020992, -46569416006, -181808493296, -710442293743, -2778591945620, -10876271461745, -42606078512048
OFFSET
0,3
COMMENTS
The Berndt-type sequence number 15 for the argument 2Pi/7 defined by requiring sqrt(7)*a(n) to be the irrational part of the trigonometric sum A(n) := c(1)^(2*n) + c(2)^(2*n) + c(4)^(2*n), where c(j) := 2*cos(Pi/4 + 2*Pi*j/7) = 2*cos((7+8*j)*Pi/28).
We note that A(n)-sqrt(7)*a(n)= A215817(n). For more facts on A(n) - see comments to A215817.
LINKS
Roman Witula and Damian Slota, New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7, Journal of Integer Sequences, Vol. 10 (2007), Article 07.5.6
Roman Witula, Ramanujan Type Trigonometric Formulas: The General Form for the Argument 2*Pi/7, Journal of Integer Sequences, Vol. 12 (2009), Article 09.8.5
FORMULA
sqrt(7)*a(n) = to the irrational part of c(1)^(2*n) + c(2)^(2*n) + c(4)^(2*n) = (1-s(1))^n + (1-s(2))^n + (1-s(4))^n, where c(j) = 2*cos((7+8*j)*Pi/28) and s(j) := sin(2*Pi*j/7).
Empirical g.f.: -x * (2*x-1)^2 * (x^2-4*x+1) / (x^6 -24*x^5 +86*x^4 -104*x^3 +53*x^2 -12*x +1). - Colin Barker, Jun 01 2013
EXAMPLE
We have a(2)/a(1) = a(3)/a(2) = a(4)/a(3) = 4, but a(5)-4*a(4)=2 and a(6)=4*(a(5)-a(2)). Moreover it follows
the relations: 4*A(1)-A(2) = 5 = (3+s(1))*(1-s(1)) + (3+s(2))*(1-s(2)) + (3+s(4))*(1-s(4)), 4*A(2)-A(3) = 10 = (3+s(1))*(1-s(1))^2 + (3+s(2))*(1-s(2))^2 + (3+s(4))*(1-s(4))^2, 4*A(3)-A(4) = 27 = (3+s(1))*(1-s(1))^3 + (3+s(2))*(1-s(2))^3 + (3+s(4))*(1-s(4))^3, whereas 4*A(4)-a(5) = 82-2*sqrt(7) = (3+s(1))*(1-s(1))^4 + (3+s(2))*(1-s(2))^4 + (3+s(4))*(1-s(4))^4.
CROSSREFS
KEYWORD
sign
AUTHOR
Roman Witula, Aug 25 2012
STATUS
approved