[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215493
a(n) = 7*a(n-1) - 14*a(n-2) + 7*a(n-3) with a(0)=0, a(1)=1, a(2)=4.
17
0, 1, 4, 14, 49, 175, 637, 2352, 8771, 32928, 124166, 469567, 1779141, 6749211, 25623472, 97329337, 369821228, 1405502182, 5342323441, 20307982135, 77201862045, 293497548512, 1115812645899, 4242135876440, 16128056932078, 61317184775679, 233122447515741
OFFSET
0,3
COMMENTS
The Berndt-type sequence number 4 for the argument 2Pi/7 - see also A215007, A215008, A215143 and A215494.
We have a(n)=A079309(n) for n=1..6, and A079309(7)-a(7)=1.
LINKS
B. C. Berndt, A. Zaharescu, Finite trigonometric sums and class numbers, Math. Ann. 330 (2004), 551-575.
B. C. Berndt, L.-C. Zhang, Ramanujan's identities for eta-functions, Math. Ann. 292 (1992), 561-573.
Roman Witula and Damian Slota, New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7, Journal of Integer Sequences, Vol. 10 (2007), Article 07.5.6
FORMULA
a(n)*sqrt(7) = s(1)^(2n-1) + s(2)^(2n-1) + s(4)^(2n-1), where s(j) := 2*Sin(2*Pi*j/7) (for the sums of the respective even powers see A215494, see also A094429, A115146). For the proof of these formula see Witula-Slota's paper.
G.f.: x*(1-3*x)/(1-7*x+14*x^2-7*x^3).
a(n) = A275830(2*n-1)/(7^n). - Kai Wang, May 25 2017
MATHEMATICA
LinearRecurrence[{7, -14, 7}, {0, 1, 4}, 50]
PROG
(PARI) x='x+O('x^30); concat([0], Vec(x*(1-3*x)/(1-7*x+14*x^2-7*x^3))) \\ G. C. Greubel, Apr 23 2018
(Magma) I:=[0, 1, 4]; [n le 3 select I[n] else 7*Self(n-1) - 14*Self(n-2) +7*Self(n-3): n in [1..30]]; // G. C. Greubel, Apr 23 2018
CROSSREFS
Sequence in context: A316974 A278026 A001894 * A079309 A026630 A352456
KEYWORD
nonn,easy
AUTHOR
Roman Witula, Aug 13 2012
STATUS
approved