[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215075
T(n,k) = Number of squarefree words of length n in a (k+1)-ary alphabet, with new values 0..k introduced in increasing order.
9
1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 2, 3, 0, 1, 1, 2, 4, 5, 0, 1, 1, 2, 4, 11, 7, 0, 1, 1, 2, 4, 12, 29, 10, 0, 1, 1, 2, 4, 12, 39, 77, 13, 0, 1, 1, 2, 4, 12, 40, 138, 202, 18, 0, 1, 1, 2, 4, 12, 40, 153, 503, 532, 24, 0, 1, 1, 2, 4, 12, 40, 154, 638, 1864, 1395, 34, 0, 1, 1, 2, 4, 12, 40, 154, 659
OFFSET
1,9
COMMENTS
Alternative definition: for (k+1)-ary words u=u_1...u_n and v=v_1...v_n, let u~v if there exists a permutation t of the alphabet such that v_i=t(u_i), i=1,...,n. Then ~ preserves length and squarefreeness, and T(n,k) is the number of equivalence classes of (k+1)-ary squarefree words of length n. - Arseny Shur, Apr 26 2015
LINKS
A. M. Shur, Growth of Power-Free Languages over Large Alphabets, CSR 2010, LNCS vol. 6072, 350-361.
A. M. Shur, Numerical values of the growth rates of power-free languages, arXiv:1009.4415 [cs.FL], 2010.
FORMULA
From Arseny Shur, Apr 26 2015: (Start)
Let L_k be the limit lim T(n,k)^{1/n}, which exists because T(n,k) is a submultiplicative sequence for any k. Then L_k=k-1/k-1/k^3-O(1/k^5) (Shur, 2010).
Exact values of L_k for small k, rounded up to several decimal places:
L_2=1.30176..., L_3=2.6215080..., L_4=3.7325386... (for L_5,...,L_14 see Shur arXiv:1009.4415).
Empirical observation: for k=2 the O-term in the general formula is slightly bigger than 2/k^5, and for k=3,...,14 this O-term is slightly smaller than 2/k^5.
(End)
EXAMPLE
Table starts
.1..1....1.....1......1......1......1......1......1......1......1......1......1
.1..1....1.....1......1......1......1......1......1......1......1......1......1
.1..2....2.....2......2......2......2......2......2......2......2......2......2
.0..3....4.....4......4......4......4......4......4......4......4......4......4
.0..5...11....12.....12.....12.....12.....12.....12.....12.....12.....12.....12
.0..7...29....39.....40.....40.....40.....40.....40.....40.....40.....40.....40
.0.10...77...138....153....154....154....154....154....154....154....154....154
.0.13..202...503....638....659....660....660....660....660....660....660....660
.0.18..532..1864...2825...3085...3113...3114...3114...3114...3114...3114...3114
.0.24.1395..6936..12938..15438..15893..15929..15930..15930..15930..15930..15930
.0.34.3664.25868..60458..81200..86857..87599..87644..87645..87645..87645..87645
.0.44.9605.96512.285664.442206.502092.513649.514795.514850.514851.514851.514851
...
Some solutions for n=6 k=4
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..1....1....1....1....1....1....1....1....1....1....1....1....1....1....1....1
..2....2....2....2....2....2....2....2....2....2....0....2....2....2....0....2
..3....3....0....0....1....3....0....3....1....0....2....3....3....3....2....1
..1....2....3....3....0....0....3....1....3....2....1....4....1....4....0....0
..0....0....1....0....3....3....2....3....1....1....2....1....2....0....1....2
CROSSREFS
Column 2 is A060688(n-1), or A006156 divided by 6 (for n>1).
Column 3 is A118311, or A051041 divided by 24 (for n>3).
Sequence in context: A143656 A141169 A343887 * A287417 A180177 A321196
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Aug 02 2012
STATUS
approved