[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051041
Number of squarefree quaternary words of length n.
4
1, 4, 12, 36, 96, 264, 696, 1848, 4848, 12768, 33480, 87936, 230520, 604608, 1585128, 4156392, 10895952, 28566216, 74887056, 196322976, 514662960, 1349208600, 3536962584, 9272217936, 24307198464, 63721617888, 167046745992, 437914664688, 1147996820376, 3009483583056, 7889385389784, 20682088837608, 54218261608896
OFFSET
0,2
COMMENTS
a(n), n > 0, is a multiple of 4 by symmetry. - Michael S. Branicky, Jun 20 2022
LINKS
A. M. Shur, Growth properties of power-free languages, Computer Science Review, Vol. 6 (2012), 187-208.
A. M. Shur, Numerical values of the growth rates of power-free languages, arXiv:1009.4415 [cs.FL], 2010.
Eric Weisstein's World of Mathematics, Squarefree Word.
FORMULA
Let L be the limit lim a(n)^{1/n}, which exists because a(n) is a submultiplicative sequence. Then L=2.6215080... (Shur 2010). See (Shur 2012) for the methods of estimating such limits. - Arseny Shur, Apr 26 2015
EXAMPLE
There are 96 quaternary squarefree words of length 4: each of the words 0102, 0120, 0121, 0123 has 4!=24 images under the permutations of the set {0,1,2,3}. - Arseny Shur, Apr 26 2015
G.f. = 1 + 4*x + 12*x^2 + 36*x^3 + 96*x^4 + 264*x^5 + 696*x^6 + 1848*x^7 + ....
PROG
(Python)
def isf(s): # incrementally squarefree (check factors ending in last letter)
for l in range(1, len(s)//2 + 1):
if s[-2*l:-l] == s[-l:]: return False
return True
def aupton(nn, verbose=False):
alst, sfs = [1], set("1")
for n in range(1, nn+1):
an = 4*len(sfs)
sfsnew = set(s+i for s in sfs for i in "0123" if isf(s+i))
alst, sfs = alst+[an], sfsnew
if verbose: print(n, an)
return alst
print(aupton(14)) # Michael S. Branicky, Jun 20 2022
CROSSREFS
Cf. A006156.
Third column of A215075, multiplied by 24 (except for the first three terms). - Arseny Shur, Apr 26 2015
Sequence in context: A261584 A347990 A002842 * A377170 A192626 A294782
KEYWORD
nonn
EXTENSIONS
More terms from David Wasserman, Feb 27 2002
a(13)-a(15) from John W. Layman, Mar 03 2004
a(16)-a(25) from Max Alekseyev, Jul 03 2006
a(26)-a(30) from Giovanni Resta, Mar 20 2020
STATUS
approved