[go: up one dir, main page]

login
A203949
Symmetric matrix based on (1,1,0,1,1,0,1,1,0,...), by antidiagonals.
4
1, 1, 1, 0, 2, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 0, 2, 1, 1, 2, 0, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 0, 2, 1, 1, 4, 1, 1, 2, 0, 1, 1, 1, 3, 2, 2, 3, 1, 1, 1, 1, 1, 2, 2, 2, 4, 2, 2, 2, 1, 1, 0, 2, 1, 1, 4, 2, 2, 4, 1, 1, 2, 0, 1, 1, 1, 3, 2, 2, 5, 2, 2, 3, 1, 1, 1, 1, 1, 2, 2, 2, 4, 3, 3
OFFSET
1,5
COMMENTS
Let s be the periodic sequence (1,1,0,1,1,0,...) and let T be the infinite square matrix whose n-th row is formed by putting n-1 zeros before the terms of s. Let T' be the transpose of T. Then A203949 represents the matrix product M=T'*T. M is the self-fusion matrix of s, as defined at A193722. See A203950 for characteristic polynomials of principal submatrices of M, with interlacing zeros.
EXAMPLE
Northwest corner:
1 1 0 1 1 0 1 1 0 1
1 2 1 1 2 1 1 2 1 1
0 1 2 1 1 2 1 1 2 1
1 1 1 3 2 1 3 2 1 3
1 2 1 2 4 2 2 4 2 2
0 1 2 1 2 4 2 2 4 2
1 1 1 3 2 2 5 3 2 5
MATHEMATICA
t = {1, 1, 0}; t1 = Flatten[{t, t, t, t, t, t, t, t, t}];
s[k_] := t1[[k]];
U = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[
Table[s[k], {k, 1, 15}]];
L = Transpose[U]; M = L.U; TableForm[M] (* A203949 *)
m[i_, j_] := M[[i]][[j]];
Flatten[Table[m[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]]
CROSSREFS
Sequence in context: A262257 A144474 A298602 * A070200 A359833 A025914
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Jan 08 2012
STATUS
approved