[go: up one dir, main page]

login
A201902
Decimal expansion of the number x satisfying x^2+3x+5=e^x.
2
3, 2, 2, 0, 0, 1, 7, 9, 5, 0, 5, 2, 5, 7, 1, 0, 2, 9, 5, 7, 7, 7, 0, 9, 2, 0, 9, 2, 5, 0, 5, 1, 3, 0, 1, 7, 8, 3, 9, 2, 9, 8, 3, 1, 6, 0, 4, 3, 3, 1, 1, 5, 5, 0, 8, 4, 6, 2, 9, 1, 1, 4, 0, 0, 9, 8, 2, 4, 9, 0, 5, 6, 5, 5, 3, 2, 3, 7, 6, 0, 7, 0, 3, 7, 7, 3, 6, 5, 3, 1, 3, 0, 2, 0, 7, 8, 8, 9, 8
OFFSET
1,1
COMMENTS
See A201741 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
x=3.220017950525710295777092092505130178392983...
MATHEMATICA
a = 1; b = 3; c = 5;
f[x_] := a*x^2 + b*x + c; g[x_] := E^x
Plot[{f[x], g[x]}, {x, -3, 3.3}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, 3.2, 3.3}, WorkingPrecision -> 110]
RealDigits[r] (* A201902 *)
CROSSREFS
Cf. A201741.
Sequence in context: A357675 A152790 A247602 * A239893 A178609 A144948
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Dec 06 2011
STATUS
approved