[go: up one dir, main page]

login
A201571
Decimal expansion of greatest x satisfying x^2 + 5 = csc(x) and 0 < x < Pi.
3
3, 0, 7, 2, 2, 7, 9, 8, 3, 0, 0, 5, 1, 2, 5, 0, 3, 3, 5, 8, 5, 9, 8, 6, 6, 4, 6, 0, 4, 6, 4, 6, 9, 9, 0, 6, 0, 3, 6, 3, 7, 2, 9, 1, 3, 7, 8, 0, 4, 8, 4, 8, 3, 4, 3, 3, 0, 6, 3, 1, 4, 0, 6, 9, 7, 8, 4, 5, 2, 0, 7, 7, 8, 5, 0, 3, 1, 7, 1, 7, 0, 5, 5, 2, 3, 2, 0, 3, 8, 1, 8, 3, 5, 8, 4, 0, 9, 6, 1
OFFSET
1,1
COMMENTS
See A201564 for a guide to related sequences. The Mathematica program includes a graph.
LINKS
EXAMPLE
least: 0.19974229281947213708674051595534811453...
greatest: 3.07227983005125033585986646046469906...
MATHEMATICA
a = 1; c = 5;
f[x_] := a*x^2 + c; g[x_] := Csc[x]
Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, .1, .2}, WorkingPrecision -> 110]
RealDigits[r] (* A201570 *)
r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.1}, WorkingPrecision -> 110]
RealDigits[r] (* A201571 *)
PROG
(PARI) a=1; c=5; solve(x=3, 3.1, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Aug 21 2018
CROSSREFS
Cf. A201564.
Sequence in context: A200119 A291943 A203622 * A010600 A175918 A265205
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Dec 03 2011
STATUS
approved