[go: up one dir, main page]

login
A206916
Index of the least binary palindrome >=n; also the "upper inverse" of A006995.
5
1, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 17, 17, 17, 17, 17
OFFSET
0,2
COMMENTS
The least m such that A006995(m)>=n;
n is palindromic iff a(n)=A206915(n);
a(n) is the number of the binary palindrome A206914(n);
if n is a binary palindrome, then A006995(a(n))=n, so a(n) is 'inverse' with respect to A006995
FORMULA
a(n)=min(m|A006995(m)>=n);
a(A006995(n))=n;
A006995(a(n))>=n, equality holds true iff n is a binary palindrome;
Let p=A206914(n), m=floor(log_2(p)) and p>2, then:
a(n)=(((5-(-1)^m)/2) + sum_{k=1..floor(m/2)} (floor(p/2^k) mod 2)/2^k))*2^floor(m/2);
a(n)=(1/2)*((6-(-1)^m)*2^floor(m/2)-1-sum_ {k=1..floor(m/2)} (-1)^floor(p/2^k)*2^(floor(m/2)-k)));
a(n)=(5-(-1)^m)*2^floor(m/2)/2-3*sum_{k=2..floor(m/2)} floor(p/2^k)*2^floor(m/2)/2^k)+(floor(p/2)*2^floor(m/2)/2-2*floor((p/2)*2^floor(m/2))*floor((m-1)/m+1/2).
Partial sums S(n) = sum_{k=0..n} a(k):
S(n) = 1+n*a(n)-A206920(a(n)-1), valid for n>0.
G.f.: g(x)=(x+x^2+x^3+sum_{j=1..infinity} x^(3*2^j)*(f_j(x)+f_j(1/x)))/(x(1-x)), where the f_j(x) are defined as follows:
f_1(x)=x, and for j>1,
f_j(x)=x^3*product_{k=1..floor((j-1)/2)} (1+x^b(j,k)), where b(j,k)=2^(floor((j-1)/2)-k)*((3+(-1)^j)*2^(2*k+1)+4) for k>1, and b(j,1)=(2+(-1)^j)*2^(floor((j-1)/2)+1).
EXAMPLE
a(2)=3 since 3 is the index number of the least binary palindrome >= 2;
a(5)=4 since 4 is the index number of the least binary palindrome >= 5;
a(10)=7 since A006995(7)=15>=10, but A006995(6)=9<10, and so that, 7 is the index number of least binary palindrome >= 10;
PROG
(Python)
def A206916(n):
l = n.bit_length()
k = l+1>>1
return (n>>l-k)+(int(bin(n)[k+1:1:-1] or '0', 2)<(n&(1<<k)-1))+(1<<k-1+(l&1^1)) # Chai Wah Wu, Jul 24 2024
CROSSREFS
Sequence in context: A322921 A030581 A113609 * A336112 A067086 A254531
KEYWORD
nonn,base
AUTHOR
Hieronymus Fischer, Feb 17 2012
STATUS
approved