[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206585
The least number s > 1 having exactly n fives in the periodic part of the continued fraction of sqrt(s).
5
2, 27, 67, 664, 331, 6487, 1237, 6019, 1999, 6331, 3964, 23983, 4204, 22075, 9739, 64639, 10684, 26419, 17971, 80719, 22969, 140971, 28414, 310759, 34189, 290779, 39181, 228691, 46099, 261691, 56884, 416707, 61429, 136579, 76651, 535375, 75916, 296839, 87151
OFFSET
0,1
MATHEMATICA
nn = 50; zeros = nn; t = Table[0, {nn}]; k = 2; While[zeros > 0, If[! IntegerQ[Sqrt[k]], cnt = Count[ContinuedFraction[Sqrt[k]][[2]], 5]; If[cnt <= nn && t[[cnt]] == 0, t[[cnt]] = k; zeros--]]; k++]; Join[{2}, t]
PROG
(Python)
from sympy import continued_fraction_periodic
def A206585(n):
i = 2
while True:
s = continued_fraction_periodic(0, 1, i)[-1]
if isinstance(s, list) and s.count(5) == n:
return i
i += 1 # Chai Wah Wu, Jun 10 2017
CROSSREFS
Cf. A206578 (n ones), A206582 (n twos), A206583 (n threes), A206584 (n fours).
Sequence in context: A277542 A273844 A294678 * A046735 A038625 A280089
KEYWORD
nonn
AUTHOR
T. D. Noe, Mar 19 2012
EXTENSIONS
Definition clarified by Chai Wah Wu, Jun 10 2017
STATUS
approved