[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204057
Triangle derived from an array of f(x), Narayana polynomials.
5
1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 11, 14, 1, 1, 5, 19, 45, 42, 1, 1, 6, 29, 100, 197, 132, 1, 1, 7, 41, 185, 562, 903, 429, 1, 1, 8, 55, 306, 1257, 3304, 4279, 1430, 1, 1, 9, 71, 469, 2426, 8925, 20071, 20793, 4862, 1, 1, 10, 89, 680, 4237, 20076, 65445, 124996, 103049, 16796, 1
OFFSET
1,5
COMMENTS
Row sums = (1, 2, 4, 10, 31, 113, 466, 2129, 10641, 138628, 335379, 2702364,...)
Another version of triangle in A008550. - Philippe Deléham, Jan 13 2012
Another version of A243631. - Philippe Deléham, Sep 26 2014
FORMULA
The triangle is the set of antidiagonals of an array in which columns are f(x) of the Narayana polynomials; with column 1 = (1, 1, 1,...) column 2 = (1, 2, 3,..), column 3 = A028387, column 4 = A090197, then A090198, A090199,...
The array by rows is generated from production matrices of the form:
1, (N-1)
1, 1, (N-1)
1, 1, 1, (N-1)
1, 1, 1, 1, (N-1)
...(infinite square matrices with the rest zeros); such that if the matrix is M, n-th term in row N is the upper left term of M^n.
From G. C. Greubel, Feb 16 2021: (Start)
T(n, k) = Hypergeometric2F1([1-k, -k], [2], n-k).
Sum_{k=1..n} T(n, k) = A132745(n) - 1. (End)
EXAMPLE
First few rows of the array =
1,....1,....1,.....1,.....1,...; = A000012
1.....2,....5,....14,....42,...; = A000108
1,....3,...11,....45,...197,...; = A001003
1,....4,...19,...100,...562,...; = A007564
1,....5,...29,...185,..1257,...; = A059231
1,....6,...41,...306,..2426,...; = A078009
...
First few rows of the triangle =
1;
1, 1;
1, 2, 1;
1, 3, 5, 1;
1, 4, 11, 14, 1;
1, 5, 19, 45, 42, 1;
1, 6, 29, 100, 197, 132, 1;
1, 7, 41, 185, 562, 903, 429, 1;
1, 8, 55, 306, 1257, 3304, 4279, 1430, 1;
1, 9, 71, 469, 2426, 8952, 20071, 20793, 4862, 1;
...
Examples: column 4 of the array = A090197: (1, 14, 45, 100,...) = N(4,n) where N(4,x) is the 4th Narayana polynomial.
Term (5,3) = 29 is the upper left term of M^3, where M = the infinite square production matrix:
1, 4, 0, 0, 0,...
1, 1, 4, 0, 0,...
1, 1, 1, 4, 0,...
1, 1, 1, 1, 4,...
... generating row 5, A059231: (1, 5, 29, 185,...).
MATHEMATICA
Table[Hypergeometric2F1[1-k, -k, 2, n-k], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Feb 16 2021 *)
PROG
(Sage)
def A204057(n, k): return 1 if n==0 else sum( binomial(n, j)^2*k^j*(n-j)/(n*(j+1)) for j in [0..n-1])
flatten([[A204057(k, n-k) for k in [1..n]] for n in [1..12]]) # G. C. Greubel, Feb 16 2021
(Magma)
A204057:= func< n, k | n eq 0 select 1 else (&+[ Binomial(n, j)^2*k^j*(n-j)/(n*(j+1)): j in [0..n-1]]) >;
[A204057(k, n-k): k in [1..n], n in [1..12]]; // G. C. Greubel, Feb 16 2021
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Jan 09 2012
EXTENSIONS
Corrected by Philippe Deléham, Jan 13 2012
STATUS
approved