OFFSET
1,2
LINKS
Muniru A Asiru, Table of n, a(n) for n = 1..11325
FORMULA
T(n,k) = Fibonacci(n+3) - Fibonacci(k+2) for n > 0 and 1 <= k <= n. - Rigoberto Florez, Oct 03 2019
EXAMPLE
First six rows:
1;
3, 2;
6, 5, 3;
11, 10, 8, 5;
19, 18, 16, 13, 8;
32, 31, 29, 26, 21, 13;
MATHEMATICA
z = 11;
p[n_, x_] := Sum[Fibonacci[k + 1]*x^(n - k), {k, 0, n}];
q[n_, x_] := x*q[n - 1, x] + 1; q[0, n_] := 1;
p1[n_, k_] := Coefficient[p[n, x], x^k];
p1[n_, 0] := p[n, x] /. x -> 0;
d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}]
h[n_] := CoefficientList[d[n, x], {x}]
TableForm[Table[Reverse[h[n]], {n, 0, z}]]
Flatten[Table[Reverse[h[n]], {n, -1, z}]] (* A094585 *)
TableForm[Table[h[n], {n, 0, z}]]
Flatten[Table[h[n], {n, -1, z}]] (* A193999 *)
(* alternate program *)
Table[Fibonacci[n+3]-Fibonacci[k+2], {n, 1, 10}, {k, 1, n}] //TableForm (* Rigoberto Florez, Oct 03 2019 *)
PROG
(GAP) Flat(List([1..11], n->Reversed(List([1..n], k->Fibonacci(n+3)-Fibonacci(n-k+3))))); # Muniru A Asiru, Apr 28 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Aug 11 2011
EXTENSIONS
Offset 1 from Muniru A Asiru, Apr 29 2019
STATUS
approved