[go: up one dir, main page]

login
A193920
Mirror of the triangle A193919.
2
1, 1, 1, 2, 3, 1, 4, 9, 7, 2, 7, 21, 25, 14, 3, 12, 46, 75, 64, 28, 5, 20, 94, 195, 224, 148, 53, 8, 33, 185, 468, 679, 603, 326, 99, 13, 54, 353, 1056, 1855, 2073, 1502, 687, 181, 21, 88, 659, 2280, 4711, 6357, 5786, 3543, 1405, 327, 34, 143, 1209, 4755
OFFSET
0,4
COMMENTS
A193920 is obtained by reversing the rows of the triangle A193919.
FORMULA
Write w(n,k) for the triangle at A193919. The triangle at A193920 is then given by w(n,n-k).
EXAMPLE
First six rows:
1
1....1
2....3....1
4....9....7....2
7....21...25...14...3
12...46...75...64...28...5
MATHEMATICA
p[n_, x_] := Sum[Fibonacci[k + 1]*x^(n - k), {k, 0, n}];
q[n_, x_] := (x + 1)^n;
t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
g[n_] := CoefficientList[w[n, x], {x}]
TableForm[Table[Reverse[g[n]], {n, -1, z}]]
Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193919 *)
TableForm[Table[g[n], {n, -1, z}]]
Flatten[Table[g[n], {n, -1, z}]] (* A193920 *)
CROSSREFS
Cf. A193919.
Sequence in context: A165241 A119865 A177896 * A076732 A130152 A211233
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 09 2011
STATUS
approved