[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193141
Primes that are the sum of 5 distinct positive cubes.
3
433, 443, 541, 673, 719, 827, 829, 881, 947, 953, 1171, 1217, 1223, 1277, 1289, 1297, 1559, 1583, 1609, 1619, 1709, 1747, 1801, 1861, 1871, 1879, 1889, 1973, 2003, 2017, 2081, 2087, 2131, 2137, 2141, 2213, 2221, 2251, 2269, 2287, 2297, 2311, 2339, 2341, 2393
OFFSET
1,1
LINKS
EXAMPLE
433=1^3+3^3+4^3+5^3+6^3, 443=1^3+2^3+3^3+4^3+7^3, 541=1^3+2^3+4^3+5^3+7^3.
MAPLE
N:= 3000: # for all terms <= N
S:= {}:
for a from 1 while 5*a^3 < N do
for b from a+1 while a^3 + 4*b^3 < N do
for c from b+1 while a^3 + b^3 + 3*c^3 < N do
for d from c+1 while a^3 + b^3 + c^3 + 2*d^3 < N do
S:= S union select(isprime, {seq(a^3 + b^3 + c^3 + d^3 + e^3, e=d+1..floor((N-a^3-b^3-c^3-d^3)^(1/3)))})
od od od od:
sort(convert(S, list)); # Robert Israel, Jun 21 2019
MATHEMATICA
lst = {}; Do[Do[Do[Do[Do[p = a^3 + b^3 + c^3 + d^3 + e^3; If[PrimeQ[p], AppendTo[lst, p]], {e, d - 1, 1, -1}], {d, c - 1, 1, -1}], {c, b - 1, 1, -1}], {b, a - 1, 1, -1}], {a, 6, 20}]; Take[Union[lst], 80]
Module[{nn=15, upto}, upto=nn^3+9; Select[Union[Total/@Subsets[Range[nn]^3, {5}]], PrimeQ[#] && #<=upto&]] (* Harvey P. Dale, Aug 31 2023 *)
PROG
(PARI) cbrt(x)=if(x<0, x, x^(1/3));
upto(lim)=my(v=List(), tb, tc, td, te); for(a=6, lim^(1/3), for(b=4, min(a-1, cbrt(lim-a^2)), tb=a^3+b^3; for(c=3, min(b-1, cbrt(lim-tb)), tc=tb+c^3; for(d=2, min(c-1, cbrt(lim-tc)), td=tc+d^3; forstep(e=1+td%2, d-1, 2, te=td+e^3; if(te>lim, break); if(isprime(te), listput(v, te))))))); vecsort(Vec(v), , 8)
\\ Charles R Greathouse IV, Jul 17 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved