[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008691
Theta series of Niemeier lattice of type A_17 E_7.
5
1, 432, 186192, 16881984, 397398096, 4631467680, 34415043264, 187482701952, 814916270160, 2975502394224, 9486501222240, 27053176872384, 70486076751552, 169930845743904, 384163759953792, 820167146628480, 1668890516764752, 3249628128869472, 6096883839494544
OFFSET
0,2
COMMENTS
Also the theta series for the Niemeier lattice of type D_10 E_7^2. - clarified by Ben Mares, Jul 17 2022
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 407.
LINKS
FORMULA
This series is the q-expansion of 5/6 E_4(z)^3 + 1/6 E_6(z)^2. See A004009 and A013973. - Daniel D. Briggs, Nov 25 2011
MATHEMATICA
terms = 15; E4[q_] := 1 + 240 Sum[DivisorSigma[3, n]*q^(2 n), {n, 1, terms}]; E6[q_] := 1 - 504 Sum[DivisorSigma[5, n]*q^(2 n), {n, 1, terms}]; s = 5/6 E4[q]^3 + 1/6 E6[q]^2 + O[q]^(3 terms); Partition[ CoefficientList[s, q], 2][[All, 1]][[1 ;; terms]] (* Jean-François Alcover, Jul 06 2017 *)
CROSSREFS
Sequence in context: A269273 A300053 A047804 * A269881 A193141 A360652
KEYWORD
nonn
EXTENSIONS
More terms from Sean A. Irvine, Mar 22 2020
STATUS
approved