[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191869
First differences of the dying rabbits sequence A000044.
1
0, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 88, 143, 231, 373, 603, 974, 1574, 2543, 4109, 6639, 10727, 17332, 28004, 45248, 73109, 118126, 190862, 308385, 498273, 805084, 1300814, 2101789, 3395964, 5487026, 8865658, 14324680, 23145090, 37396661, 60423625
OFFSET
1,5
FORMULA
G.f.: x^3(1 + x + x^2 + x^3 + x^4)(1 - x + x^2 - x^3 + x^4)/(1 - x - x^3 - x^5 - x^7 - x^9 - x^11). - Charles R Greathouse IV, Jun 19 2011
MATHEMATICA
A000044 = CoefficientList[Series[1/(1 - z - z^3 - z^5 - z^7 - z^9 - z^11), {z, 0, 200}], z]; GetDiff[seq_List] := Drop[seq, 1] - Drop[seq, -1]; A191869 = GetDiff[A000044]
PROG
(PARI) A191869_list=Vec((-x^11-x^9-x^7-x^5-x^3)/(x^11+x^9+x^7+x^5+x^3+x-1)+O(x^99)) /* returns a list of the first 96 nonzero terms, a(3)...a(99) */
(PARI) A191869(n)=polcoeff((1+x^2+x^4+x^6+x^8)/(1-x-x^3-x^5-x^7-x^9-x^11+O(x^max(1, n-2))), n-3) \\ M. F. Hasler, Jun 19 2011
CROSSREFS
Cf. A000044.
Sequence in context: A023440 A225396 A290689 * A077373 A202278 A132634
KEYWORD
nonn,easy
AUTHOR
STATUS
approved