[go: up one dir, main page]

login
A190491
a(n) = [(bn+c)r]-b[nr]-[cr], where (r,b,c)=(sqrt(2),3,1) and []=floor.
25
1, 2, 1, 2, 0, 1, 3, 1, 2, 0, 2, 3, 1, 2, 1, 2, 0, 1, 3, 1, 2, 0, 1, 3, 1, 2, 0, 2, 0, 1, 2, 1, 2, 0, 1, 3, 1, 2, 0, 2, 3, 1, 2, 1, 2, 0, 1, 3, 1, 2, 0, 2, 3, 1, 2, 1, 2, 0, 1, 2, 1, 2, 0, 1, 3, 1, 2, 0, 2, 3, 1, 2, 1, 2, 0, 1, 3, 1, 2, 0, 2, 3, 1, 2, 1, 2, 0, 1, 3, 1, 2, 0, 1, 3, 1, 2, 0, 2, 0, 1, 2, 1, 2, 0, 1, 3, 1, 2, 0, 2, 3, 1, 2, 1, 2, 0, 1, 3, 1, 2, 0, 2, 3, 1, 2, 0, 2, 0
OFFSET
1,2
COMMENTS
Write a(n)=[(bn+c)r]-b[nr]-[cr]. If r>0 and b and c are integers satisfying b>=2 and 0<=c<=b-1, then 0<=a(n)<=b. The positions of 0 in the sequence a are of interest, as are the position sequences for 1,2,...,b. These b+1 position sequences comprise a partition of the positive integers.
Examples:
(golden ratio,2,1): A190427-A190430
(sqrt(2),2,0): A190480, A120743, A170749
(sqrt(2),2,1): A190483-A190486
(sqrt(2),3,0): A190487-A190490
(sqrt(2),3,1): A190491-A190495
(sqrt(2),3,2): A190496-A190500
LINKS
MATHEMATICA
r = Sqrt[2]; b = 3; c = 1;
f[n_] := Floor[(b*n + c)*r] - b*Floor[n*r] - Floor[c*r];
t = Table[f[n], {n, 1, 200}] (* A190491 *)
Flatten[Position[t, 0]] (* A190492 *)
Flatten[Position[t, 1]] (* A190493 *)
Flatten[Position[t, 2]] (* A190494 *)
Flatten[Position[t, 3]] (* A190495 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 11 2011
STATUS
approved