[go: up one dir, main page]

login
A197850
Decimal expansion of greatest x having x^2-2x=-2*cos(x).
3
2, 6, 6, 7, 0, 2, 8, 4, 6, 4, 1, 0, 5, 8, 0, 1, 7, 9, 2, 6, 3, 5, 5, 4, 2, 1, 2, 9, 4, 9, 8, 3, 9, 9, 7, 4, 5, 8, 1, 5, 6, 8, 7, 8, 0, 8, 6, 3, 0, 3, 0, 2, 9, 7, 8, 5, 5, 1, 5, 5, 7, 5, 5, 6, 9, 0, 1, 1, 4, 1, 9, 8, 8, 3, 6, 3, 1, 8, 2, 9, 4, 1, 9, 1, 0, 4, 6, 8, 2, 6, 2, 6, 1, 3, 4, 5, 2, 3, 9
OFFSET
1,1
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: 1.0485583594904940957585652640454931931...
greatest x: 2.66702846410580179263554212949839974
MATHEMATICA
a = 1; b = -2; c = -2;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, 0, 3}]
r1 = x /. FindRoot[f[x] == g[x], {x, 1, 1.1}, WorkingPrecision -> 110]
RealDigits[r1] (* A197849 *)
r2 = x /. FindRoot[f[x] == g[x], {x, 2.6, 2.7}, WorkingPrecision -> 110]
RealDigits[r2] (* A197850 *)
CROSSREFS
Cf. A197737.
Sequence in context: A087651 A078579 A110936 * A226043 A228443 A010591
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 21 2011
STATUS
approved