[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A195297
Decimal expansion of normalized Philo sum, Philo(ABC,I), where I=incenter of an 8,15,17 right triangle ABC.
4
5, 4, 1, 6, 7, 7, 0, 5, 2, 1, 6, 1, 9, 8, 5, 5, 4, 2, 0, 6, 4, 7, 8, 0, 7, 6, 4, 5, 5, 6, 8, 5, 0, 0, 9, 2, 5, 2, 4, 1, 1, 2, 7, 0, 2, 3, 0, 4, 6, 3, 2, 1, 3, 5, 8, 9, 9, 9, 5, 0, 9, 2, 2, 0, 3, 5, 7, 0, 4, 9, 6, 1, 6, 1, 6, 8, 7, 8, 2, 4, 4, 4, 1, 7, 0, 6, 0, 2, 2, 6, 8, 4, 8, 1, 3, 7, 9, 5, 8, 9
OFFSET
0,1
COMMENTS
See A195284 for definitions and a general discussion.
EXAMPLE
Philo(ABC,I)=0.54167705216198554206478076455685009252411270...
MATHEMATICA
a = 8; b = 15; c = 17;
h = a (a + c)/(a + b + c); k = a*b/(a + b + c);
f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2;
s = NSolve[D[f[t], t] == 0, t, 150]
f1 = (f[t])^(1/2) /. Part[s, 4]
RealDigits[%, 10, 100] (* (A) A195293 *)
f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f3 = (f[t])^(1/2) /. Part[s, 1]
RealDigits[%, 10, 100] (* (B) A195296 *)
f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f2 = (f[t])^(1/2) /. Part[s, 4]
RealDigits[%, 10, 100] (* (C) A010524 *)
(f1 + f2 + f3)/(a + b + c)
RealDigits[%, 10, 100] (* Philo(ABC, I), A195297 *)
CROSSREFS
Cf. A195284.
Sequence in context: A084129 A011503 A296498 * A336284 A258639 A072222
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Sep 14 2011
STATUS
approved