[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194137
a(n) = Sum_{j=1..n} floor(j*sqrt(6)); n-th partial sum of Beatty sequence for sqrt(6).
1
2, 6, 13, 22, 34, 48, 65, 84, 106, 130, 156, 185, 216, 250, 286, 325, 366, 410, 456, 504, 555, 608, 664, 722, 783, 846, 912, 980, 1051, 1124, 1199, 1277, 1357, 1440, 1525, 1613, 1703, 1796, 1891, 1988, 2088, 2190, 2295, 2402, 2512, 2624, 2739, 2856
OFFSET
1,1
MATHEMATICA
c[n_] := Sum[Floor[j*Sqrt[6]], {j, 1, n}];
c = Table[c[n], {n, 1, 90}]
PROG
(Python)
from sympy import integer_nthroot
def A194137(n): return sum(integer_nthroot(6*j**2, 2)[0] for j in range(1, n+1)) # Chai Wah Wu, Mar 17 2021
CROSSREFS
Cf. A022840 (Beatty sequence for sqrt(6)).
Sequence in context: A267874 A194143 A194138 * A226292 A026052 A049616
KEYWORD
nonn
AUTHOR
Clark Kimberling, Aug 17 2011
STATUS
approved