Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Apr 07 2024 17:11:54
%S 1,1,1,-2,1,4,-4,1,1,-6,11,-6,1,9,-24,22,-8,1,1,-12,46,-62,37,-10,1,
%T 16,-80,148,-128,56,-12,1,1,-20,130,-314,367,-230,79,-14,1,25,-200,
%U 610,-920,771,-376,106,-16,1,1,-30,295,-1106,2083,-2232,1444,-574,137,-18,1,36,-420,1897,-4352,5776,-4744,2486,-832,172,-20,1,1,-42,581,-3108,8518,-13672,13820,-9142,4013,-1158,211,-22,1
%N Coefficient array for square of Chebyshev S-polynomials.
%C For the coefficients of Chebyshev polynomials S(n,x) see A049310.
%C The row length sequence for this array is A109613 = {1,1,3,3,5,5,...}.
%C The row polynomials (in x^2) for even row numbers are
%C S(2*k,x)^2 = Sum_{m=0..2*k} a(2*k,m)*x^(2*m), k >= 0.
%C For odd row numbers the row polynomials (in x^2) are
%C (S(2*k+1,x)^2)/x^2 = Sum_{m=0..2*k} a(2*k+1,m)*x^(2*m), k >= 0.
%C The o.g.f. for the polynomials S(n,x)^2 is
%C S(x,z):=((1+z)/(1-z))/(1 + (2-x^2)z +z^2). See the link for a proof. Therefore the coefficients constitute the Riordan array (1/(1-x^2),x/(1+x)^2) found as A158454.
%C The o.g.f. for (S(2*k,sqrt(x))^2 is
%C (1-2(1-x)z+z^2)/((1-z)*(1 - (2-4x+x^2)z + z^2)).
%C The o.g.f. for ((S(2*k+1,sqrt(x))^2)/x is
%C ((1+z)/(1-z))/(1 - (2-4x+x^2)z + z^2).
%C The row sums A011655(n+1) are the same as those for the triangle A158454.
%C The alternating row sums for even numbered rows (-1)^n*A007598(n+1) coincide with those of triangle A158454. For odd row numbers n=2k+1 these sums are A049684(k+1), k >= 0 (squares of even-indexed Fibonacci numbers).
%H Wolfdieter Lang, <a href="/A181878/a181878.pdf">First ten rows with more details and proofs</a>.
%F a(2*k,m) = (-1)^m*Sum_{j=0..k} binomial(2*k+m-1-2*j, 2*m-1), k >= 0.
%F a(2*k+1,m) = (-1)^m*Sum_{j=0..k} binomial(2*k+1+m-2*j, 2*m+1), k >= 0.
%F This derives from the formula for the entries of the Riordan array A158454.
%F For the o.g.f.s see the comment.
%e The irregular triangle a(n,m) begins:
%e n\m 0 1 2 3 4 5 6 7 8 9 10 ...
%e 0: 1
%e 1: 1
%e 2: 1 -2 1
%e 3: 4 -4 1
%e 4: 1 -6 11 -6 1
%e 5: 9 -24 22 -8 1
%e 6: 1 -12 46 -62 37 -10 1
%e 7: 16 -80 148 -128 56 -12 1
%e 8: 1 -20 130 -314 367 -230 79 -14 1
%e 9: 25 -200 610 -920 771 -376 106 -16 1
%e 10: 1 -30 295 -1106 2083 -2232 1444 -574 137 -18 1
%e ... Reformatted and extended by _Wolfdieter Lang_, Nov 24 2012
%t Join[{{1}, {1}}, CoefficientList[Table[ChebyshevU[n, Sqrt[x]/2]^2, {n, 2, 10}], x]] // Flatten (* _Eric W. Weisstein_, Apr 04 2018 *)
%t Join[{{1}, {1}}, CoefficientList[ChebyshevU[Range[2, 10], Sqrt[x]/2]^2, x]] // Flatten (* _Eric W. Weisstein_, Apr 04 2018 *)
%Y Cf. A158454, A129818.
%K sign,easy,tabf
%O 0,4
%A _Wolfdieter Lang_, Dec 22 2010
%E Corrected by _Wolfdieter Lang_, Jan 21 2011