OFFSET
0,4
COMMENTS
For the coefficients of Chebyshev polynomials S(n,x) see A049310.
The row length sequence for this array is A109613 = {1,1,3,3,5,5,...}.
The row polynomials (in x^2) for even row numbers are
S(2*k,x)^2 = Sum_{m=0..2*k} a(2*k,m)*x^(2*m), k >= 0.
For odd row numbers the row polynomials (in x^2) are
(S(2*k+1,x)^2)/x^2 = Sum_{m=0..2*k} a(2*k+1,m)*x^(2*m), k >= 0.
The o.g.f. for the polynomials S(n,x)^2 is
S(x,z):=((1+z)/(1-z))/(1 + (2-x^2)z +z^2). See the link for a proof. Therefore the coefficients constitute the Riordan array (1/(1-x^2),x/(1+x)^2) found as A158454.
The o.g.f. for (S(2*k,sqrt(x))^2 is
(1-2(1-x)z+z^2)/((1-z)*(1 - (2-4x+x^2)z + z^2)).
The o.g.f. for ((S(2*k+1,sqrt(x))^2)/x is
((1+z)/(1-z))/(1 - (2-4x+x^2)z + z^2).
LINKS
Wolfdieter Lang, First ten rows with more details and proofs.
FORMULA
a(2*k,m) = (-1)^m*Sum_{j=0..k} binomial(2*k+m-1-2*j, 2*m-1), k >= 0.
a(2*k+1,m) = (-1)^m*Sum_{j=0..k} binomial(2*k+1+m-2*j, 2*m+1), k >= 0.
This derives from the formula for the entries of the Riordan array A158454.
For the o.g.f.s see the comment.
EXAMPLE
The irregular triangle a(n,m) begins:
n\m 0 1 2 3 4 5 6 7 8 9 10 ...
0: 1
1: 1
2: 1 -2 1
3: 4 -4 1
4: 1 -6 11 -6 1
5: 9 -24 22 -8 1
6: 1 -12 46 -62 37 -10 1
7: 16 -80 148 -128 56 -12 1
8: 1 -20 130 -314 367 -230 79 -14 1
9: 25 -200 610 -920 771 -376 106 -16 1
10: 1 -30 295 -1106 2083 -2232 1444 -574 137 -18 1
... Reformatted and extended by Wolfdieter Lang, Nov 24 2012
MATHEMATICA
Join[{{1}, {1}}, CoefficientList[Table[ChebyshevU[n, Sqrt[x]/2]^2, {n, 2, 10}], x]] // Flatten (* Eric W. Weisstein, Apr 04 2018 *)
Join[{{1}, {1}}, CoefficientList[ChebyshevU[Range[2, 10], Sqrt[x]/2]^2, x]] // Flatten (* Eric W. Weisstein, Apr 04 2018 *)
CROSSREFS
KEYWORD
sign,easy,tabf
AUTHOR
Wolfdieter Lang, Dec 22 2010
EXTENSIONS
Corrected by Wolfdieter Lang, Jan 21 2011
STATUS
approved