[go: up one dir, main page]

login
A181864
a(1) = 1, a(2) = 2. For n >= 3, a(n) is found by concatenating the squares of the first n-1 terms of the sequence and then dividing the resulting number by a(n-1).
10
1, 2, 7, 207, 700207, 207000000700207, 70020700000000000000207000000700207, 2070000007002070000000000000000000000000000000000070020700000000000000207000000700207
OFFSET
1,2
COMMENTS
The calculations for the first few values of the sequence are
... 2^2 = 4 so a(3) = 14/2 = 7
... 7^2 = 49 so a(4) = 1449/7 = 207
... 207^2 = 42849 so a(5) = 144942849/207 = 700207.
For similarly defined sequences see A181754 through A181756 and A181865 through
FORMULA
DEFINITION
a(1) = 1, a(2) = 2, and for n >= 3
(1)... a(n) = concatenate(a(1)^2,a(2)^2,...,a(n-1)^2)/a(n-1).
RECURRENCE RELATION
For n >= 2
(2)...a(n+2) = a(n+1) + 10^F(n,2)*a(n) = a(n+1) + 10^Pell(n)*a(n),
where F(n,2) is the Fibonacci polynomial F(n,x) evaluated at x = 2
and where Pell(n) = A000129(n).
RELATION WITH OTHER SEQUENCES
a(n) has A113225(n-2) digits.
a(n)^2 has Pell(n-1) digits.
MAPLE
M:=8: a:=array(1..M):s:=array(1..M):
a[1]:=1:a[2]:=2:
s[1]:=convert(a[1]^2, string):
s[2]:=cat(s[1], convert(a[2]^2, string)):
for n from 3 to M do
a[n] := parse(s[n-1])/a[n-1];
s[n]:= cat(s[n-1], convert(a[n]^2, string));
end do:
seq(a[n], n = 1..M);
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Nov 28 2010
STATUS
approved