[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172219
Number of ways to place 4 nonattacking nightriders on a 4 X n board.
2
1, 16, 84, 412, 1126, 2760, 5739, 10982, 19695, 33068, 52801, 80638, 118731, 169368, 235135, 318890, 423733, 553028, 710389, 899690, 1125059, 1390880, 1701793, 2062694, 2478735, 2955324, 3498125, 4113058, 4806299, 5584280, 6453689
OFFSET
1,2
COMMENTS
A nightrider is a fairy chess piece that can move (proportionate to how a knight moves) in any direction.
FORMULA
a(n) = (32n^4 - 432n^3 + 3190n^2 - 13323n + 25530)/3, n>=18.
G.f.: -x * (2*x^21 -6*x^20 +10*x^19 -14*x^18 +22*x^17 -30*x^16 -26*x^15 +162*x^14 -272*x^13 +364*x^12 -466*x^11 +526*x^10 -303*x^9 -207*x^8 +603*x^7 -517*x^6 +489*x^5 -249*x^4 +142*x^3 +14*x^2 +11*x +1) / (x-1)^5. - Vaclav Kotesovec, Mar 25 2010
MATHEMATICA
CoefficientList[Series[-(2 x^21 - 6 x^20 + 10 x^19 - 14 x^18 + 22 x^17 - 30 x^16 - 26 x^15 + 162 x^14 - 272 x^13 + 364 x^12 - 466 x^11 + 526 x^10 - 303 x^9 - 207 x^8 + 603 x^7 - 517 x^6 + 489 x^5 - 249 x^4 + 142 x^3 + 14 x^2 + 11 x + 1) / (x - 1)^5, {x, 0, 50}], x] (* Vincenzo Librandi, May 28 2013 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vaclav Kotesovec, Jan 29 2010
STATUS
approved