[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172217
Number of ways to place 7 nonattacking knights on a 7 X n board.
2
1, 78, 1758, 38588, 383246, 2135344, 8891854, 30108310, 86669806, 219845764, 504261973, 1065642840, 2104251027, 3924818982, 6973786593, 11884673662, 19532410762, 31097451768, 48140491605, 72688612756, 107333684073
OFFSET
1,2
FORMULA
a(n) = (117649n^7-2571471n^6+29223943n^5-216954465n^4+1114503256n^3-3907492824n^2+8562799512n-8962924320)/720,n>=12.
For any fixed value of k > 1, a(n) = 1/k!*(kn)^k - 3(k-1)(3k-4)/2/k!*(kn)^(k-1) + ...
G.f.: x * (252*x^18 -272*x^17 -5134*x^16 +14468*x^15 +19721*x^14 -132666*x^13 +174233*x^12 +119440*x^11 -540473*x^10 +654954*x^9 -89133*x^8 -93778*x^7 +497782*x^6 +56796*x^5 +119468*x^4 +26652*x^3 +1162*x^2 +70*x +1) / (x-1)^8. - Vaclav Kotesovec, Mar 25 2010
MATHEMATICA
CoefficientList[Series[(252 x^18 - 272 x^17 - 5134 x^16 + 14468 x^15 + 19721 x^14 - 132666 x^13 + 174233 x^12 + 119440 x^11 - 540473 x^10 + 654954 x^9 - 89133 x^8 - 93778 x^7 + 497782 x^6 + 56796 x^5 + 119468 x^4 + 26652 x^3 + 1162 x^2 + 70 x + 1) / (x - 1)^8, {x, 0, 50}], x] (* Vincenzo Librandi, May 27 2013 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vaclav Kotesovec, Jan 29 2010
STATUS
approved