[go: up one dir, main page]

login
A170515
Number of reduced words of length n in Coxeter group on 26 generators S_i with relations (S_i)^2 = (S_i S_j)^46 = I.
0
1, 26, 650, 16250, 406250, 10156250, 253906250, 6347656250, 158691406250, 3967285156250, 99182128906250, 2479553222656250, 61988830566406250, 1549720764160156250, 38743019104003906250, 968575477600097656250
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170745, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, -300).
FORMULA
G.f. (t^46 + 2*t^45 + 2*t^44 + 2*t^43 + 2*t^42 + 2*t^41 + 2*t^40 + 2*t^39 +
2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 +
2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 +
2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 +
2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 +
2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(300*t^46 - 24*t^45 -
24*t^44 - 24*t^43 - 24*t^42 - 24*t^41 - 24*t^40 - 24*t^39 - 24*t^38 -
24*t^37 - 24*t^36 - 24*t^35 - 24*t^34 - 24*t^33 - 24*t^32 - 24*t^31 -
24*t^30 - 24*t^29 - 24*t^28 - 24*t^27 - 24*t^26 - 24*t^25 - 24*t^24 -
24*t^23 - 24*t^22 - 24*t^21 - 24*t^20 - 24*t^19 - 24*t^18 - 24*t^17 -
24*t^16 - 24*t^15 - 24*t^14 - 24*t^13 - 24*t^12 - 24*t^11 - 24*t^10 -
24*t^9 - 24*t^8 - 24*t^7 - 24*t^6 - 24*t^5 - 24*t^4 - 24*t^3 - 24*t^2 -
24*t + 1)
MATHEMATICA
With[{num=Total[2t^Range[45]]+t^46+1, den=Total[-24 t^Range[45]]+ 330t^46+ 1}, CoefficientList[Series[num/den, {t, 0, 20}], t]] (* Harvey P. Dale, Jul 04 2012 *)
CROSSREFS
Sequence in context: A170371 A170419 A170467 * A170563 A170611 A170659
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved