[go: up one dir, main page]

login
A170611
Number of reduced words of length n in Coxeter group on 26 generators S_i with relations (S_i)^2 = (S_i S_j)^48 = I.
0
1, 26, 650, 16250, 406250, 10156250, 253906250, 6347656250, 158691406250, 3967285156250, 99182128906250, 2479553222656250, 61988830566406250, 1549720764160156250, 38743019104003906250, 968575477600097656250
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170745, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, -300).
FORMULA
G.f. (t^48 + 2*t^47 + 2*t^46 + 2*t^45 + 2*t^44 + 2*t^43 + 2*t^42 + 2*t^41 +
2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 +
2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 +
2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 +
2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 +
2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +
1)/(300*t^48 - 24*t^47 - 24*t^46 - 24*t^45 - 24*t^44 - 24*t^43 - 24*t^42
- 24*t^41 - 24*t^40 - 24*t^39 - 24*t^38 - 24*t^37 - 24*t^36 - 24*t^35 -
24*t^34 - 24*t^33 - 24*t^32 - 24*t^31 - 24*t^30 - 24*t^29 - 24*t^28 -
24*t^27 - 24*t^26 - 24*t^25 - 24*t^24 - 24*t^23 - 24*t^22 - 24*t^21 -
24*t^20 - 24*t^19 - 24*t^18 - 24*t^17 - 24*t^16 - 24*t^15 - 24*t^14 -
24*t^13 - 24*t^12 - 24*t^11 - 24*t^10 - 24*t^9 - 24*t^8 - 24*t^7 -
24*t^6 - 24*t^5 - 24*t^4 - 24*t^3 - 24*t^2 - 24*t + 1)
MATHEMATICA
With[{num=Total[2t^Range[47]]+t^48+1, den=Total[-24 t^Range[47]]+ 300t^48+ 1}, CoefficientList[Series[num/den, {t, 0, 30}], t]] (* Harvey P. Dale, Nov 30 2012 *)
CROSSREFS
Sequence in context: A170467 A170515 A170563 * A170659 A170707 A170745
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved