[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179483
A(k,3) where A(k,n) = Sum_{m=1..k} (-1)^(m+1) *binomial(n,m)*m^k.
1
3, -9, 6, 36, 150, 540, 1806, 5796, 18150, 55980, 171006, 519156, 1569750, 4733820, 14250606, 42850116, 128746950, 386634060, 1160688606, 3483638676, 10454061750, 31368476700, 94118013006, 282379204836, 847187946150, 2541664501740, 7625194831806
OFFSET
1,1
FORMULA
a(n) = A001117(n), n>=3. - R. J. Mathar, Jul 20 2010
From Colin Barker, May 21 2017: (Start)
G.f.: 3*x*(1 - 9*x + 31*x^2 - 39*x^3 + 18*x^4) / ((1 - x)*(1 - 2*x)*(1 - 3*x)).
a(n) = 3 - 3*2^n + 3^n for n>2.
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) for n>5.
(End)
MAPLE
A179483 := proc(n) add( (-1)^(m+1)*binomial(3, m)*m^n, m=1..n) ; end proc: # R. J. Mathar, Jan 31 2011
MATHEMATICA
Sum[(-1)^(m+1)Binomial[3, m]m^k, {m, 1, k}]
PROG
(PARI) Vec(3*x*(1 - 9*x + 31*x^2 - 39*x^3 + 18*x^4) / ((1 - x)*(1 - 2*x)*(1 - 3*x)) + O(x^30)) \\ Colin Barker, May 21 2017
CROSSREFS
Cf. A001117.
Sequence in context: A223815 A275414 A223309 * A346108 A271879 A016676
KEYWORD
sign,easy
AUTHOR
M. Lawrence Glasser, Jul 16 2010
STATUS
approved