[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179080
Number of partitions of n into distinct parts where all differences between consecutive parts are odd.
3
1, 1, 1, 2, 1, 3, 2, 4, 2, 6, 4, 7, 5, 9, 8, 12, 10, 14, 15, 17, 19, 22, 26, 26, 32, 32, 42, 40, 52, 48, 66, 59, 79, 73, 98, 89, 118, 108, 143, 133, 170, 160, 204, 194, 241, 236, 286, 283, 336, 339, 396, 407, 464, 483, 544, 575, 634, 681, 740, 803, 862, 944, 1001, 1110, 1162, 1296, 1348, 1512, 1561, 1760, 1805
OFFSET
0,4
LINKS
Atul Dixit and Gaurav Kumar, The Rogers-Ramanujan dissection of a theta function, arXiv:2411.06412 [math.NT], 2024. See pp. 16, 23.
FORMULA
G.f.: sum(n>=0, x^(n*(n+1)/2) / prod(k=1..n+1, 1-x^(2*k) ) ). - Joerg Arndt, Jan 29 2011
a(n) = A179049(n) + A218355(n). - Joerg Arndt, Oct 27 2012
EXAMPLE
From Joerg Arndt, Oct 27 2012: (Start)
The a(18) = 15 such partitions of 18 are:
[ 1] 1 2 3 12
[ 2] 1 2 5 10
[ 3] 1 2 7 8
[ 4] 1 2 15
[ 5] 1 4 5 8
[ 6] 1 4 13
[ 7] 1 6 11
[ 8] 1 8 9
[ 9] 2 3 4 9
[10] 2 3 6 7
[11] 3 4 5 6
[12] 3 4 11
[13] 3 6 9
[14] 5 6 7
[15] 18
(End)
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i>n, 0, b(n, i+2)+b(n-i, i+1)))
end:
a:= n-> `if`(n=0, 1, b(n, 1)+b(n, 2)):
seq(a(n), n=0..100); # Alois P. Heinz, Nov 08 2012; revised Feb 24 2020
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[n==0, 1, If[i<1, 0, b[n, i-1, t] + If[i <= n && Mod[i, 2] != t, b[n-i, i-1, Mod[i, 2]], 0]]]; a[n_] := If[n==0, 1, Sum[b[n-i, i-1, Mod[i, 2]], {i, 1, n}]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Mar 24 2015, after Alois P. Heinz *)
Join[{1}, Table[Length[Select[IntegerPartitions[n], Max[Length/@Split[#]]==1 && AllTrue[ Differences[#], OddQ]&]], {n, 70}]] (* Harvey P. Dale, Jun 25 2022 *)
PROG
(Sage)
def A179080(n):
odd_diffs = lambda x: all(abs(d) % 2 == 1 for d in differences(x))
satisfies = lambda p: not p or odd_diffs(p)
def count(pred, iter): return sum(1 for item in iter if pred(item))
return count(satisfies, Partitions(n, max_slope=-1))
print([A179080(n) for n in range(0, 20)]) # show first terms
(Sage) # Alternative after Alois P. Heinz:
def A179080(n):
@cached_function
def h(n, k):
if n == 0: return 1
if k > n: return 0
return h(n, k+2) + h(n-k, k+1)
return h(n, 1) + h(n, 2) if n > 0 else 1
print([A179080(n) for n in range(71)]) # Peter Luschny, Feb 25 2020
(PARI) N=66; x='x+O('x^N); gf = sum(n=0, N, x^(n*(n+1)/2) / prod(k=1, n+1, 1-x^(2*k) ) ); Vec( gf ) /* Joerg Arndt, Jan 29 2011 */
CROSSREFS
Cf. A179049 (odd differences and odd minimal part).
Cf. A189357 (even differences, distinct parts), A096441 (even differences).
Cf. A000009 (partitions of 2*n with even differences and even minimal part).
Sequence in context: A024162 A334677 A365876 * A294199 A078658 A307719
KEYWORD
nonn
AUTHOR
Joerg Arndt, Jan 04 2011
STATUS
approved