OFFSET
1,5
COMMENTS
Multidimensional Catalan numbers; a special case of the "hook-number formula".
Number of paths from (0,0,...,0) to (n,n,...,n) in m dimensions, all coordinates increasing: if (x_1,x_2,...,x_m) is on the path, then x_1 <= x_2 <= ... <= x_m. Number of ways to label an n by m array with all the values 1..n*m such that each row and column is strictly increasing. Number of rectangular Young Tableaux. Number of linear extensions of the n X m lattice (the divisor lattice of a number having exactly two prime divisors). - Mitch Harris, Dec 27 2005
Given m*n lines in a {(m + 1)(n - 1)}-dimensional space, T(m, n) is the number of {n*(m-1)-1}-dimensional spaces cutting these lines in points (see Fontanari and Castelnuovo). - Stefano Spezia, Jun 19 2022
REFERENCES
Guido Castelnuovo, Numero degli spazi che segano più rette in uno spazio ad n dimensioni, Rendiconti della R. Accademia dei Lincei, s. IV, vol. V, 4 agosto 1889. In Guido Castelnuovo, Memorie scelte, Zanichelli, Bologna 1937, pp. 55-64 (in Italian).
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 7.23.19(b).
LINKS
Alois P. Heinz, Antidiagonals n = 1..36
Albrecht Böttcher, Wiener-Hopf Determinants with Rational Symbols, Math. Nachr. 144 (1989), 39-64.
Freddy Cachazo and Nick Early, Minimal Kinematics: An all k and n peek into Trop^+G(k,n), arXiv:2003.07958 [hep-th], 2020.
Freddy Cachazo and Nick Early, Planar Kinematics: Cyclic Fixed Points, Mirror Superpotential, k-Dimensional Catalan Numbers, and Root Polytopes, arXiv:2010.09708 [math.CO], 2020.
Freddy Cachazo and Nick Early, Biadjoint Scalars and Associahedra from Residues of Generalized Amplitudes, arXiv:2204.01743 [hep-th], 2022.
Nick Early, Planarity in Generalized Scattering Amplitudes: PK Polytope, Generalized Root Systems and Worldsheet Associahedra, arXiv:2106.07142 [math.CO], 2021, see p. 14.
Ömer Eğecioğlu, On Böttcher's mysterious identity, Australasian Journal of Combinatorics, Volume 43 (2009), 307-316.
Paul Drube, Generating Functions for Inverted Semistandard Young Tableaux and Generalized Ballot Numbers, arXiv:1606.04869 [math.CO], 2016.
Claudio Fontanari, Guido Castelnuovo and his heritage: geometry, combinatorics, teaching, arXiv:2206.06709 [math.HO], 2022. See pp. 2-3.
J. S. Frame, G. de B. Robinson and R. M. Thrall, The hook graphs of a symmetric group, Canad. J. Math. 6 (1954), pp. 316-324.
Alexander Garver and Thomas McConville, Chapoton triangles for nonkissing complexes, Algebraic Combinatorics, 3 (2020), pp. 1331-1363.
K. Gorska and K. A. Penson, Multidimensional Catalan and related numbers as Hausdorff moments, arXiv preprint arXiv:1304.6008 [math.CO], 2013.
F. Santos, C. Stump, and V. Welker, Noncrossing sets and a Graßmannian associahedron, in FPSAC 2014, Chicago, USA; Discrete Mathematics and Theoretical Computer Science (DMTCS) Proceedings, 2014, 609-620.
Wikipedia, Hook length formula
FORMULA
EXAMPLE
Array begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 5, 14, 42, 132, ...
1, 5, 42, 462, 6006, 87516, ...
1, 14, 462, 24024, 1662804, 140229804, ...
1, 42, 6006, 1662804, 701149020, 396499770810, ...
1, 132, 87516, 140229804, 396499770810, 1671643033734960, ...
MAPLE
T:= (m, n)-> (m*n)! * mul(i!/(m+i)!, i=0..n-1):
seq(seq(T(n, 1+d-n), n=1..d), d=1..10);
MATHEMATICA
maxm = 10; t[m_, n_] := Product[k!, {k, 0, n - 1}]*(m*n)! / Product[k!, {k, m, m + n - 1}]; Flatten[ Table[t[m + 1 - n, n], {m, 1, maxm}, {n, 1, m}]] (* Jean-François Alcover, Sep 21 2011 *)
Table[ BarnesG[n+1]*(n*(m-n+1))!*BarnesG[m-n+2] / BarnesG[m+2], {m, 1, 10}, {n, 1, m}] // Flatten (* Jean-François Alcover, Jan 30 2016 *)
PROG
(PARI) {A(i, j) = if( i<0 || j<0, 0, (i*j)! / prod(k=1, i+j-1, k^vecmin([k, i, j, i+j-k])))}; /* Michael Somos, Jan 28 2004 */
CROSSREFS
Cf. A227578. - Alois P. Heinz, Jul 18 2013
Cf. A321716.
KEYWORD
AUTHOR
R. H. Hardin, May 03 2001
EXTENSIONS
More terms from Frank Ellermann, May 21 2001
STATUS
approved