[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163402
A Minkowski-type generalization of the factorial function: F(n,k) with k = 2.
2
1, 1, 1, 3, 9, 135, 1215, 2835, 127575, 229635, 3444525, 1705039875, 107417512125, 13299311025, 4189282972875, 62839244593125, 188517733779375, 336504154796184375, 9085612179496978125, 2740105260483215625
OFFSET
0,4
COMMENTS
F(n,0) = n! (A000142)
F(n,1) = Minkowski(n)/n! (A163176)
F(n,2) = a(n)
FORMULA
P(n,k) = {p prime | k+1 <= p <= n }
L(n,p,r) = Sum_{i>=0} floor((n-r)/((p-r)*p^i))
A(n,k) = Prod_{p in P(n,k)} p^(Sum_{m=0..k} (-1)^m*L(n,p,m))
F(n,k) = A(n,k)^((-1)^k).
EXAMPLE
For n >= 0
F(n,0) 1, 1, 2, 6, 24, 120, 720, 5040, 40320, ...
F(n,1) 1, 1, 1, 4, 2, 48, 16, 576, 144, 3840, ...
F(n,2) 1, 1, 1, 3, 9, 135, 1215, 2835, 127575, ...
F(n,3) 1, 1, 1, 1, 1, 1, 1, 5, 1, 25, 5, 35, ...
F(n,4) 1, 1, 1, 1, 1, 5, 25, 175, 4375, 4375, ...
F(n,5) 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 49, ...
MAPLE
F := proc(n, k) local L, p, i;
L := proc(n, u, r) local q, s, m; m:=n-r;
q:=u-r; s:=0; do if q>m then break fi;
s:=s+iquo(m, q); q:=q*u od; s end;
mul(p^add((-1)^i*L(n, p, i), i=0..k),
p = select(isprime, [$(k+1)..n]))^((-1)^k) end:
a(n) := n -> F(n, 2);
MATHEMATICA
F[n_, k_] := Module[{L, p, i}, L[n0_, u_, r_] := Module[{q, s, m}, m = n0-r; q = u-r; s = 0; While[True, If[q > m, Break[]]; s = s + Quotient[m, q]; q = q*u]; s]; Product[p^Sum[(-1)^i*L[n, p, i], {i, 0, k}], {p, Select[Range[k+1, n], PrimeQ]}]^((-1)^k)]; a[n_] := F[n, 2]; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Jan 15 2014, translated from Maple *)
PROG
(Sage)
def A163402(n):
def L(n, u, r):
m = n - r; q = u - r
s = 0
while(q <= m):
s += m//q
q *= u
return s
P = filter(is_prime, [3..n])
return mul(p^add((-1)^i*L(n, p, i) for i in (0..2)) for p in P)
print([A163402(n) for n in range(20)]) # Peter Luschny, Mar 13 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Jul 26 2009
STATUS
approved