[go: up one dir, main page]

login
A160823
A transform of the large Schroeder numbers.
2
1, 1, 3, 5, 13, 27, 69, 161, 415, 1033, 2701, 6983, 18521, 49041, 131723, 354493, 962381, 2620675, 7178285, 19724513, 54430023, 150641937, 418294813, 1164528399, 3250685297, 9094701729, 25501672595, 71649158709, 201687341901
OFFSET
0,3
COMMENTS
Hankel transform is A060656(n+1).
LINKS
FORMULA
G.f.: 1/(1-x-2x^2/(1-x^2/(1-x-2x^2/(1-x^2/(1-x-2x^2/(1-x^2/(1-...))))))) (continued fraction);
G.f.: (1-x-x^2-sqrt(1-2*x-5*x^2+6*x^3+x^4))/(2*x^2*(1-x)).
a(n) = Sum_{k=0..floor(n/2)} C(n-k,k)*A006318(k).
Conjecture: (n+2)*a(n) -3*(n+1)*a(n-1) +3(2-n)*a(n-2) +(11*n-20)*a(n-3) +(11-5*n)*a(n-4) + (4-n)*a(n-5)=0. - R. J. Mathar, Nov 16 2011
a(n) ~ sqrt((-36 + 63*sqrt(2) + sqrt(8666 - 4936*sqrt(2)))/8) * ((1 + sqrt(13 + 8*sqrt(2)))/2)^n / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, May 01 2018
EXAMPLE
G.f. = 1 + x + 3*x^2 + 5*x^3 + 13*x^4 + 27*x^5 + 69*x^6 + 161*x^7 + ...
MATHEMATICA
CoefficientList[Series[(1-x-x^2-Sqrt[1-2*x-5*x^2+6*x^3+x^4])/(2*x^2*(1- x)), {x, 0, 50}], x] (* G. C. Greubel, Apr 30 2018 *)
PROG
(PARI) x='x+O('x^50); Vec((1-x-x^2-sqrt(1-2*x-5*x^2+6*x^3+x^4))/(2*x^2*(1-x))) \\ G. C. Greubel, Apr 30 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1-x-x^2-Sqrt(1-2*x-5*x^2+6*x^3+x^4))/(2*x^2*(1-x)))); // G. C. Greubel, Apr 30 2018
CROSSREFS
Sequence in context: A026569 A035082 A005198 * A077443 A147196 A110225
KEYWORD
easy,nonn
AUTHOR
Paul Barry, May 27 2009
STATUS
approved