[go: up one dir, main page]

login
A160665
Numbers k such that the arithmetic mean of the first k Lucas numbers A000032 is an integer.
2
1, 3, 24, 48, 72, 96, 120, 144, 192, 216, 240, 288, 336, 360, 384, 406, 432, 480, 576, 600, 648, 672, 720, 768, 864, 936, 960, 1008, 1080, 1104, 1152, 1200, 1224, 1296, 1320, 1344, 1368, 1440, 1536, 1680, 1728, 1800, 1920, 1944, 2016, 2160, 2208, 2304
OFFSET
1,2
COMMENTS
Numbers n such that sum(i=0..n, A000032(i))/(n+1) is an integer. - Robert G. Wilson v, May 25 2009
Why do the terms in A141767 so closely correspond to A160665? Except for n = 1, 3, 406, 44758, 341446, 1413286, 3170242, 4861698, 7912534, ..., n == 0 (mod 24). - Robert G. Wilson v, May 25 2009
FORMULA
{n: n | A001610(n)}. - R. J. Mathar, May 25 2009
MAPLE
A000032 := proc(n) option remember ; if n <= 1 then 2-n; else procname(n-1)+procname(n-2) ; fi; end: A001610 := proc(n) add(A000032(i), i=0..n-1) ; end: for n from 1 to 3000 do if A001610(n) mod n = 0 then printf("%d, ", n) ; fi; od: # R. J. Mathar, May 25 2009
MATHEMATICA
lst = {}; a = 2; b = 1; s = 3; n = 3; While[n < 2447, c = a + b; s = s + c; If[Mod[c, n] == 0, AppendTo[lst, n]]; a = b; b = c; n++ ]; lst (* Robert G. Wilson v, May 25 2009 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Ctibor O. Zizka, May 22 2009
EXTENSIONS
More terms from R. J. Mathar and Robert G. Wilson v, May 25 2009
STATUS
approved