[go: up one dir, main page]

login
A166312
Number of 1's in binary expansion of A000326(n).
1
0, 1, 2, 2, 3, 3, 4, 3, 4, 5, 3, 3, 4, 7, 6, 4, 5, 5, 7, 3, 5, 5, 6, 5, 5, 7, 7, 4, 4, 8, 7, 5, 6, 5, 7, 6, 6, 9, 5, 6, 5, 6, 4, 4, 5, 8, 7, 7, 6, 9, 7, 6, 10, 6, 8, 7, 4, 8, 7, 4, 8, 9, 8, 6, 7, 5, 7, 6, 9, 8, 7, 8, 8, 8, 10, 4, 6, 7, 10, 6, 6, 6, 9, 5, 7, 7, 8, 7, 7, 9, 8, 5, 7, 10, 9, 7, 7, 9, 6, 8, 8, 9, 8
OFFSET
0,3
FORMULA
a(n) = A000120(A000326(n)). - R. J. Mathar, Oct 14 2009
MAPLE
read("transforms") ;
A000326 := proc(n) n*(3*n-1)/2 ; end:
A166312 := proc(n) wt(A000326(n)) ; end: seq(A166312(n), n=0..80) ; # R. J. Mathar, Oct 14 2009
MATHEMATICA
Clear[lst, n, s, f] f[n_]:=Plus@@IntegerDigits[n, 2]; s=0; lst={s}; Do[s+=n; AppendTo[lst, f[s]], {n, 1, 6!, 3}]; lst
CROSSREFS
Sequence in context: A287896 A087504 A067539 * A138099 A359634 A353936
KEYWORD
nonn,base,easy
AUTHOR
EXTENSIONS
Definition shortened, offset set to zero by R. J. Mathar, Oct 14 2009
STATUS
approved