[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A153490
Sierpinski carpet, read by antidiagonals.
9
1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1
OFFSET
1,1
COMMENTS
The Sierpinski carpet is the fractal obtained by starting with a unit square and at subsequent iterations, subdividing each square into 3 X 3 smaller squares and removing (from nonempty squares) the middle square. After the n-th iteration, the upper-left 3^n X 3^n squares will always remain the same. Therefore this sequence, which reads these by antidiagonals, is well-defined.
Row sums are {1, 2, 2, 4, 5, 4, 6, 6, 4, 8, 10, 8, ...}.
LINKS
Eric Weisstein's World of Mathematics, Sierpinski Carpet.
Wikipedia, Sierpinski carpet.
EXAMPLE
The Sierpinski carpet matrix reads
1 1 1 1 1 1 1 1 1 ...
1 0 1 1 0 1 1 0 1 ...
1 1 1 1 1 1 1 1 1 ...
1 1 1 0 0 0 1 1 1 ...
1 0 1 0 0 0 1 0 1 ...
1 1 1 0 0 0 1 1 1 ...
1 1 1 1 1 1 1 1 1 ...
1 0 1 1 0 1 1 0 1 ...
1 1 1 1 1 1 1 1 1 ...
(...)
so the antidiagonals are
{1},
{1, 1},
{1, 0, 1},
{1, 1, 1, 1},
{1, 1, 1, 1, 1},
{1, 0, 1, 1, 0, 1},
{1, 1, 1, 0, 1, 1, 1},
{1, 1, 1, 0, 0, 1, 1, 1},
{1, 0, 1, 0, 0, 0, 1, 0, 1},
{1, 1, 1, 1, 0, 0, 1, 1, 1, 1},
{1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1},
{1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1},
...
MATHEMATICA
<< MathWorld`Fractal`; fractal = SierpinskiCarpet;
a = fractal[4]; Table[Table[a[[m]][[n - m + 1]], {m, 1, n}], {n, 1, 12}];
Flatten[%]
PROG
(PARI) A153490_row(n, A=Mat(1))={while(#A<n, A=matrix(3*#A, 3*#A, i, j, if(A[(i+2)\3, (j+2)\3], i%3!=2||j%3!=2))); vector(n, k, A[k, n-k+1])} \\ M. F. Hasler, Oct 23 2017
CROSSREFS
Cf. A292688 (n-th antidiagonal concatenated as binary number), A292689 (decimal representation of these binary numbers).
Cf. A293143 (number of vertex points in a Sierpinski Carpet).
Sequence in context: A333922 A071026 A259022 * A014194 A014379 A014164
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Dec 27 2008
EXTENSIONS
Edited by M. F. Hasler, Oct 20 2017
STATUS
approved