[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A153285
a(1)=1; for n > 1, a(n) = n^2 + Sum_{j=1..n-1} (-1)^j*a(j).
4
1, 3, 11, 7, 23, 11, 35, 15, 47, 19, 59, 23, 71, 27, 83, 31, 95, 35, 107, 39, 119, 43, 131, 47, 143, 51, 155, 55, 167, 59, 179, 63, 191, 67, 203, 71, 215, 75, 227, 79, 239, 83, 251, 87, 263, 91, 275, 95, 287, 99, 299, 103, 311, 107, 323, 111, 335, 115, 347, 119, 359
OFFSET
1,2
COMMENTS
1 followed by interleaving of A004767 and A017653. - Klaus Brockhaus, Jan 04 2009
FORMULA
a(n) = 2n-1 if n is 1 or an even number;
a(n) = 6n-7 if n is an odd number other than 1.
G.f.: x*(1 + 3*x + 9*x^2 + x^3 + 2*x^4)/((1+x)^2*(1-x)^2). - Klaus Brockhaus, Oct 15 2009
a(n) = 4*(n-1) - (2*n-3)*(-1)^n for n>1, a(1)=1. - Bruno Berselli, Sep 14 2011
EXAMPLE
a(1) = 1;
a(2) = 2^2 - a(1) = 4 - 1 = 3;
a(3) = 3^2 + a(2) - a(1) = 9 + 3 - 1 = 11;
a(4) = 4^2 - 11 + 3 - 1 = 7;
a(5) = 25 + 7 - 11 + 3 - 1 = 23;
a(6) = 36 - 23 + 7 - 11 + 3 - 1 = 11; etc.
PROG
(Magma) S:=[ 1 ]; for n in [2..61] do Append(~S, n^2 + &+[ (-1)^j*S[j]: j in [1..n-1] ]); end for; S; // Klaus Brockhaus, Jan 04 2009
(Scheme) (define (A153285 n) (cond ((= 1 n) n) ((even? n) (+ n n -1)) (else (+ (* 6 n) -7)))) ;; Antti Karttunen, Aug 10 2017
CROSSREFS
The second of a family of sequences that includes A153284 and A153286
Cf. A004767 (4n+3), A017653 (12n+11). - Klaus Brockhaus, Jan 04 2009
Sequence in context: A164808 A378680 A355895 * A083557 A119324 A322364
KEYWORD
nonn,easy
AUTHOR
Walter Carlini, Dec 23 2008
EXTENSIONS
Extended beyond a(30) by Klaus Brockhaus, Jan 04 2009
STATUS
approved