[go: up one dir, main page]

login
A151319
Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0) and consisting of n steps taken from {(-1, 0), (0, -1), (0, 1), (1, 0), (1, 1)}.
0
1, 3, 13, 57, 263, 1233, 5869, 28201, 136471, 664031, 3244373, 15904999, 78180131, 385141745, 1900808447, 9395586359, 46502309921, 230413447773, 1142763706389, 5672369968137, 28176421469243, 140049400473211, 696494762630355, 3465512981413485, 17250679866579039, 85903957507564797
OFFSET
0,2
LINKS
M. Bousquet-Mélou and M. Mishna, 2008. Walks with small steps in the quarter plane, ArXiv 0810.4387.
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899.
MATHEMATICA
aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, -1 + j, -1 + n] + aux[-1 + i, j, -1 + n] + aux[i, -1 + j, -1 + n] + aux[i, 1 + j, -1 + n] + aux[1 + i, j, -1 + n]]; Table[Sum[aux[i, j, n], {i, 0, n}, {j, 0, n}], {n, 0, 25}]
CROSSREFS
Sequence in context: A115968 A256939 A005827 * A151222 A349299 A151223
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved