[go: up one dir, main page]

login
A115968
Expansion of 1/(sqrt(1-4*x) + sqrt(1-2*x-3*x^2) - 1).
1
1, 3, 13, 57, 255, 1149, 5201, 23607, 107345, 488721, 2227007, 10154511, 46323507, 211396611, 964966149, 4405717137, 20118308687, 91880092029, 419657355725, 1916914550859, 8756654087981, 40003289475363, 182755724339143
OFFSET
0,2
LINKS
FORMULA
G.f.: A(x)*B(x)/(A(x) +B(x) -A(x)*B(x)) where A(x) is the g.f. of A000984 and B(x) is the g.f. of A002426.
MATHEMATICA
CoefficientList[Series[1/(Sqrt[1-4*x] +Sqrt[1-2*x-3*x^2] -1), {x, 0, 30} ], x] (* G. C. Greubel, Mar 08 2017 *)
PROG
(PARI) my(x='x+O('x^30)); Vec(1/(sqrt(1-4*x) + sqrt(1-2*x-3*x^2) - 1)) \\ G. C. Greubel, Mar 08 2017
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 1/(Sqrt(1-4*x) + Sqrt(1-2*x-3*x^2) - 1) )); // G. C. Greubel, May 06 2019
(Sage) (1/(sqrt(1-4*x) + sqrt(1-2*x-3*x^2) - 1)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 06 2019
CROSSREFS
Sequence in context: A010921 A275634 A163606 * A256939 A005827 A151319
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Feb 03 2006
STATUS
approved