[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159987
Catalan numbers read modulo 8.
2
1, 1, 2, 5, 6, 2, 4, 5, 6, 6, 4, 2, 4, 4, 0, 5, 6, 6, 4, 6, 4, 4, 0, 2, 4, 4, 0, 4, 0, 0, 0, 5, 6, 6, 4, 6, 4, 4, 0, 6, 4, 4, 0, 4, 0, 0, 0, 2, 4, 4, 0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 5, 6, 6, 4, 6, 4, 4, 0, 6, 4, 4, 0, 4, 0, 0, 0, 6, 4, 4, 0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2, 4, 4, 0, 4, 0, 0, 0, 4, 0
OFFSET
0,3
LINKS
Rob Burns, Asymptotic density of Catalan numbers modulo 3 and powers of 2, arXiv:1611.03705 [math.NT], 2016.
Shu-Chung Liu and Jean C.-C. Yeh, Catalan numbers modulo 2^k, J. Int. Seq., Vol. 13 (2010), Article 10.5.4.
FORMULA
a(n) = A000108(n) mod 8.
a(n) == A159981(n) (mod 4). - R. J. Mathar, Apr 30 2009
Asymptotic mean: lim_{n->oo} (1/n) Sum_{k=1..n} a(k) = 0 (Burns, 2016). - Amiram Eldar, Jan 26 2021
MAPLE
A000108 := proc(n) binomial(2*n, n)/(n+1) ; end:
A159987 := proc(n) A000108(n) mod 8 ; end:
seq(A159987(n), n=0..120) ; # R. J. Mathar, Apr 30 2009
MATHEMATICA
Table[Mod[CatalanNumber[n], 8], {n, 0, 100}] (* Amiram Eldar, Jan 26 2021 *)
CROSSREFS
Sequence in context: A318388 A145058 A103130 * A143678 A346042 A021800
KEYWORD
easy,nonn
AUTHOR
Philippe Deléham, Apr 28 2009
STATUS
approved